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Resilience, a system’s ability to adjust its activity to retain its basic 
functionality when errors, failures and environmental changes 
occur, is a defining property of many complex systems1. Despite 
widespread consequences for human health2, the economy3 and 
the environment4, events leading to loss of resilience—from 
cascading failures in technological systems5 to mass extinctions 
in ecological networks6—are rarely predictable and are often 
irreversible. These limitations are rooted in a theoretical gap: the 
current analytical framework of resilience is designed to treat 
low-dimensional models with a few interacting components7, 
and is unsuitable for multi-dimensional systems consisting of 
a large number of components that interact through a complex 
network. Here we bridge this theoretical gap by developing a set of 
analytical tools with which to identify the natural control and state 
parameters of a multi-dimensional complex system, helping us 
derive effective one-dimensional dynamics that accurately predict 
the system’s resilience. The proposed analytical framework allows 
us systematically to separate the roles of the system’s dynamics 
and topology, collapsing the behaviour of different networks 
onto a single universal resilience function. The analytical results 
unveil the network characteristics that can enhance or diminish 
resilience, offering ways to prevent the collapse of ecological, 
biological or economic systems, and guiding the design of 
technological systems resilient to both internal failures and 
environmental changes.

The traditional mathematical treatment of resilience used  
from ecology4 to engineering5 approximates the behaviour of a 
complex system with a one-dimensional (1D) nonlinear dynamic 
equation
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t

f xd
d
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The functional form of f(β, x) represents the system’s dynamics, and 
the parameter β captures the changing environmental conditions. The 
system is assumed to be in one of the stable fixed points, x0, of equation 
(1), extracted from5
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where equation (2) provides the system’s steady state and equation (3) 
guarantees its linear stability. The solution of equations (2) and (3) pro-
vides the resilience function x(β), which represents the possible states 
of the system as a function of β (Fig. 1a–c). The shape of this function 
is uniquely determined by the functional form of f(β, x). In contrast, 
the momentary state of the system is determined by the tunable param-
eter β. At some critical point βc the resilience function may feature a 
bifurcation (Fig. 1a) or become non-analytic (Fig. 1b, c), indicating that 

the system loses its resilience by undergoing a sudden transition to a 
different8,9, often undesirable, fixed point of equation (1).

Although it is conceptually powerful, this analytic framework does 
not account for the exceptionally large number of variables that in 
reality control the state of a complex system. Indeed, real systems 
are composed of numerous components linked via a complex set of 
weighted, often directed, interactions10,11, and controlled by not one 
microscopic parameter, but by a large family of parameters, such 
as the weights of all interactions. Hence, instead of a 1D function 
f(β, x), characterized by a single parameter β, their state should be 
described by a network of coupled nonlinear equations that cap-
ture the interactions between the system’s many components, and 
account for the complex interplay between the system’s dynamics 
and changes in the underlying network topology6,12. The resulting 
resilience function is therefore a multi-dimensional manifold over 
the complex parameter space characterizing the system (Fig. 1d–f), 
which, using the current tools, cannot be treated analytically. Here 
we overcome these longstanding limitations by developing a general 
network-based theoretical framework that allows us to explore and 
predict the multiple roots and dimensions of resilience, exposing cru-
cial determinants of resilience loss in complex natural and man-made  
systems.

Consider a system consisting of N components (nodes) whose activ-
ities = ( … )x x x, , N1  follow the coupled nonlinear equations12,13
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The first term on the right-hand side of equation (4) describes the 
self-dynamics of each component, while the second term describes 
the interactions between component i and its interacting partners. The 
nonlinear functions F(xi) and G(xi, xj) represent the dynamical laws 
that govern the system’s components, while the weighted connectiv-
ity matrix Aij captures the interactions between the nodes. With an 
appropriate choice of F(xi) and G(xi, xj), equation (4) is used to model 
numerous systems known for their resilience, ranging from cellular14 
to ecological15,16 and social systems17.

In analogy with the 1D system of equation (1), a transition from a 
desired to an undesired stable fixed point captures the loss of resilience 
in the multi-dimensional system of equation (4). The key difference is 
that in equation (4) resilience loss can be induced by changes in any of 
the N2 parameters of the weighted network Aij, each change capturing 
a different kind of perturbation (Fig. 1g). For instance, the extinction/
introduction of species in an ecological system may correspond to the 
removal/addition of one or several nodes7,18. Alternatively, the loss of 
an enzyme catalysing a reaction in a metabolic network19 may corre-
spond to link removal. Finally, global environmental changes, such 
as increases in ocean acidity or global warming20, may correspond to 
global shifts in the weights of Aij.

We illustrate the challenges such multi-dimensional systems offer by 
exploring the mutualistic interactions among species in an ecological 
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network. Here equation (4) tracks the abundance xi(t) of species i, 
following16
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The first term on the right hand side of equation (5) accounts for the 
incoming migration of i at a rate Bi from neighbouring ecosystems. 
The second term describes logistic growth with the system carrying 
capacity21 Ki, and the Allee effect, according to which for low abun-
dance (xi < Ci) the system features negative growth22. The third term 
describes mutualistic interactions, captured by a response function 
that saturates for large xi or xj, indicating that j’s positive contribution 
to xi is bounded. To construct Aij we used symbiotic interactions, 
such as plant–pollinator relationships, collected for seven ecologi-
cal systems23 (Supplementary Table 1), describing networks ranging 
from N = 10 to N = 1,429 nodes (Fig. 2a, b). We numerically solved 
equation (5), and tested its resilience under three realistic pertur-
bations (Fig. 2c): first, we randomly removed a fraction fn of nodes, 
capturing plant extinctions; second, we removed a random frac-
tion fl of pollinators, thus perturbing the mutualistic link weights; 
and finally, we randomly rescaled all the weights Aij, reducing their 
strength on average by a fraction fw to mimic global environmental  
changes.

We find that for small perturbations the system maintains its resil-
ience: its only stable fixed point is xH, in which the average abun-
dance 〈x〉 is high. However, when the perturbation exceeds a certain 
threshold a bifurcation occurs, resulting in two stable fixed points: the 
desired xH and an undesired low-abundance state xL (Fig. 2d). Under 
these conditions the system loses its resilience, potentially transi-
tioning to the undesired xL. The precise bifurcation point marking 
this loss of resilience is, however, highly unpredictable. For instance,  

Net1 displays a different resilience pattern for node removal (Fig. 2d), 
link removal (Fig. 2e) or global weight changes (Fig. 2f), indicating that 
different forms of perturbations lead to different outcomes within the 
same system. Such diversity is also observed for similar perturbations 
across different systems. For example, while we need to remove at least 
35% of the pollinators for Net1 to lose its resilience (Fig. 2e), Net5 
remains resilient even after 80% of its pollinators are deleted (Fig. 2h).  
Finally, even the sequence in which the perturbation is applied makes 
an important difference: Net1 can lose its resilience anywhere between 
the removal of 30% to 70% of its nodes (Fig. 2d), depending on the 
specific trial.

Altogether, we analysed fourteen experimentally mapped networks 
(Supplementary Table 1), finding that the resilience transition depends 
on the network topology, the form and the nature of the perturbation 
applied and the specific realization (Fig. 2d–l, and Supplementary  
Figs 2–4), exposing severe limits to our ability to predict the network 
resilience. We now show that this seemingly unpredictable behaviour 
can be systematically treated by focusing on the system’s natural state 
and control variables. In a network environment, the state of each 
node is affected by the state of its immediate neighbours. Therefore, 
we characterize the effective state of the system using the average  
nearest-neighbour activity
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1
out , 〈 〉 = 〈 〉 = 〈 〉s s sin out  is the average weighted  

degree, and 1 is the unit vector 1 = (1,…,1). As we show in 
Supplementary Information section I, if Aij has not much degree  
correlation, the variable xeff in equation (6) allows us to reduce the 

Figure 1 | Network resilience. a–c, In 1D systems 
resilience is captured by the resilience function 
x(β), which describes the state(s) of the system as a 
function of the tunable parameter β. We illustrate 
three typical examples. a, The bifurcating resilience 
function. The system exhibits a single stable fixed 
point for β > βc (blue) and two (or more) stable 
fixed points, a desired (blue) and an undesired 
(red) for β < βc. b, Resilience function with a first-
order transition from the desired (blue) state to the 
undesired (red) state. c, Resilience function with a 
stable solution for β < βc and no solution above βc, 
resulting in an uncontrolled divergent or chaotic 
behaviour. d–f, In a multi-dimensional system, the 
single parameter β is replaced by the complex 
weighted network Aij, whose characteristics 
depend on both environmental conditions and  
the specific pairwise interaction strengths. 
Consequently, the resilience function, now 
capturing the behaviour of the vector state x(Aij),  
is a multi-dimensional manifold, prohibiting 
analytical treatment. The 3D plots show the 
resilience plane for a four-node system, displaying 
x(A23, A24) for fixed A12 and A34. The full 
description of an N-dimensional system requires 
an N2-dimensional plane, tracking the state of the 
system as a function of all Aij. g, After applying our 
formalism, the multi-dimensional manifold shown 
in d–f collapses into a 1D resilience function in  
β-space (blue and red solid lines). The structure of 
this function, and hence its critical points βeff

c  
(dashed lines) is fully determined by the system’s 
dynamics F(xi) and G(xi, xj): ecological, regulatory, 
power transmission and so on (left). The network 
topology Aij (right) determines βeff through 
equation (8), and hence the specific state of the 
system (brown dot) along the resilience function.
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multi-dimensional equation (4) to an effective 1D equation, written in 
terms of xeff

β= ( ) + ( ) ( )x
t

F x G x xd
d

, 7eff
eff eff eff eff
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averages over the product of the outgoing and incoming degrees  
of all nodes. This reduction maps the multi-dimensional complex 
system (4) into an effective 1D equation of the form of equation (1), 
where

β β( ) = ( ) + ( ) ( )f x F x G x x, , 9eff eff eff eff eff eff

We predict, therefore, that the N2 parameters of the microscopic 
description Aij collapse into a single macroscopic resilience parameter  
βeff (see equation (8)), so that regardless of the microscopic details 

of the perturbation (node/link removal, weight reduction or any 
combination thereof), its impact on the state of the system is fully 
accounted for by the corresponding changes in βeff. This implies that 
the rather diverse and unpredictable behaviours observed in Fig. 2 
are, in fact, drawn from a single universal resilience function, inde-
pendent of the network topology Aij, and uniquely determined by the 
system’s dynamics F(xi) and G(xi, xj). The network Aij, which is fully  
condensed into the single macroscopic parameter βeff, determines 
only the specific state of the system along this function. Such mapping 
of equation (4) to the 1D equation (7) allows us to take advantage 
of the theoretical tools developed for low-dimensional systems and 
apply them to a broad range of complex systems.

To illustrate the power of our formalism we apply it to the mutualistic 
networks of Fig. 2. Reducing the multi-dimensional equation (5) to 
the form of equation (9) we arrive at the 1D equation (Supplementary 
Information section II)
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Figure 2 | Resilience in ecological networks.  
a, The bipartite network Mik consists of nodes 
representing symbiotically connected species,  
such as plants and pollinators or fish and anemone.  
b, From Mik we construct two mutualistic networks 
(Supplementary Information section II.B) by linking 
pairs of plants that share mutual pollinators (Aij), or 
pollinators that share mutual plants (Bij). c, We tested 
the resilience of fourteen mutualistic networks 
(equation (5); Bi = B = 0.1, Ci = C = 1, Ki = K = 5, 
Di = D = 5, Ei = E = 0.9 and Hj = H = 0.1) against:  
(1) extinction of a fraction fn of plants; (2) extinction 
of a fraction fl of pollinators, impacting the relevant 
plant link weights; (3) decreasing all weights on 
average to a fraction fw of their original value, 
simulating a global change in the environmental 
conditions, for example, varying temperature. d, The 
average abundance of fish in Net1 versus fn across 100  
realizations (we highlight one of these realizations in 
black). At a critical fraction fn the system undergoes a 
bifurcation, where in addition to the high-abundance 
state (xH) an undesired low-abundance state emerges 
(xL). However, owing to the multi-dimensionality of 
Aij, each realization is microscopically distinct, and as  
a result the bifurcation point is unpredictable, ranging 
from fn = 0.3 to fn = 0.7 across different realizations.  
e, f, Similar diversity characterizes the system’s 
response to link perturbation fl (e) and global 
perturbations fw. (f). g–l, The difficulty in 
predictability is also observed in the larger networks 
Net5 and Net7. Additional results appear in 
Supplementary Figs 2–4. m, Our formalism predicts 
that in β-space the resilience function takes a 
universal form, similar to that shown in Fig. 1a, with 
bifurcation at βeff

c  = 6.97, independent of Aij. n, All 
data in d–l and in Supplementary Figs 2–4, 
comprising 28 highly diverse networks, collapses 
onto the universal resilience function predicted in m, 
indicating that regardless of the network structure and 
the form of perturbation, the state of the system is 
fully determined by βeff (equation (8)).
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Using equations (2) and (3), equation (10) predicts a bifurcating resil-
ience function of the form of Fig. 1a, and a transition from a resilient 
state with a single stable fixed point, xH, to a non-resilient state in which 
both xH and xL are stable. The critical point of this bifurcation is pre-
dicted to be β = .6 97eff

c , a value fully determined by the dynamics, inde-
pendent of the network topology Aij (Fig. 2m and Supplementary 
Information section II).

Our formalism predicts that the diversity observed in Fig. 2d–l and 
in Supplementary Figs 2–4, is, in fact, driven by the universal curve 
of Fig. 2m. This universality can be exposed by transitioning to the 
natural parameter space of xeff (see equation (6)) and βeff (see equation 
(8)). Hence we re-plotted all the data of Fig. 2d–l (and Supplementary 
Figs 2–4, 28 diverse networks in total), in this effective β-space, finding 
that, as predicted, all data points collapse into a single universal curve, 
regardless of the size and the topology of the specific ecological net-
work or the nature of the applied perturbation (Fig. 2n). This collapse 
indicates that our analytically predicted resilience function exposes a 
universality sustained across networks of different size, density, degree 
and weight distributions. Additional extensive testing of this universal-
ity appears in Supplementary Information section V.

In summary, the resilience pattern of a complex system is effectively 
unpredictable in the natural (x, Aij) state parameter space. Once, how-
ever, we map the system into β-space we can accurately predict the 
system’s response to diverse perturbations and correctly identify the 
critical points where the system loses its resilience.

Next we explore the resilience of gene regulatory networks governed 
by the Michaelis–Menten equation14
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The first term on the right-hand side of equation (11) describes degra-
dation (f = 1) or dimerization (f = 2); the second term captures genetic 
activation, where the Hill coefficient h describes the level of cooper-
ation in gene regulation14. Applying this model with B = 1, f = 1 and 
h = 1 to the transcription networks of Saccharomyces cerevisiae24 and 
Escherichia coli25, we find that under sufficiently large perturbations 

the cell undergoes a transition from a resilient state (〈x〉 > 0) to cell 
death (〈x〉 = 0, Fig. 3a–f). Once again, resilience loss strongly depends 
on the nature of the perturbation (gene knockout, suppression of 
regulatory interactions, environmental change), as well as on the dif-
ferences between the wiring diagrams of S. cerevisiae versus E. coli 
(Supplementary Table 2). Rewriting equation (11) in the reduced form 
of equation (7), we find that regulatory dynamics follow the universal 
resilience function shown in Fig. 1b, featuring a single first-order tran-
sition from the active state to cell death at (Supplementary Information 
section III)
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Indeed, in β-space, all trajectories of Fig. 3a–f collapse onto the ana-
lytically derived resilience function, as predicted by our formalism  
(Fig. 3h). In Supplementary Information section IV we develop another 
application area, demonstrating how to apply our formalism to predict 
the resilience of energy supply in the power grid.

Although the resilience function is uniquely determined by the 
dynamical functions F(xi) and G(xi, xj), the actual position of the 
system along this curve, capturing its momentary state, is deter-
mined by the weighted network topology Aij, as expressed through 
βeff in equation (8). This prompts us to ask what aspects of the  
network topology determine a system’s resilience. We therefore rewrite  
βeff as

β = 〈 〉 + ( )SHs 13eff

where 〈 〉s , S  and H represent three characteristics of Aij. The depend-
ence on the network density 〈 〉s  indicates that denser networks have a 
larger βeff (Fig. 4a). The heterogeneity in the weighted degrees sin and 
sout is captured by H σ σ= /〈 〉sin out , where σin

2  and σout
2  are the variance 

of the marginal probability density functions P(sin) and P(sout) respec-
tively (Fig. 4b). Finally, the symmetry between sin and sout is captured 
by σ σ= (〈 〉 − 〈 〉〈 〉)/( )S s s s sin out in out

in out , the in–out weighted-degree 
correlation coefficient. This term, S− ≤ ≤1 1, is positive when nodes 

Figure 3 | Resilience in gene regulatory networks.  
We ran Michaelis–Menten dynamics (equation (11)) on 
the transcription regulatory networks of S. cerevisiae24 
and E. coli25 (Supplementary Table 2) to model the 
dynamics of genetic regulation, providing the average 
activity 〈x〉 of all genes. a, By removing a sufficiently  
high fraction fn of nodes the system undergoes a 
transition from xH > 0 (alive) to xL = 0 (cell death).  
The transition point occurs at a different value of fn in 
each realization. b, c, Similar results are found for link 
perturbations and global weight changes. d–f, The same 
diversity is observed for the E. coli network as well. g, Our 
formalism predicts that the behaviour of gene regulation 
is captured by a universal resilience function of the form 
of Fig. 1b, with a single first-order transition at βeff

c  = 2. 
This function is determined by the regulatory dynamics 
of equation (11), and is independent of the network 
structure or the nature of its perturbations. h, The results 
of a–f shown in β-space. Regardless of the system’s 
microscopic details, all observed data points, taken  
from S. cerevisiae or E. coli, induced by node 
perturbations (red), link perturbations (green) or weight 
changes (blue), collapse onto the same curve, well 
approximated by the analytically predicted universal 
resilience function (solid line).
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with large si
in tend also to have a large si

out. An undirected network 
Aij = Aji is a perfectly symmetric network, as =s si i

in out, hence S= 1; an 
asymmetric network is one where nodes with a large in-degree tend to 
have a small out-degree, in which case S< 0, tending towards −1  
(Fig. 4c).

Equation (13) helps us to identify the network characteristics that 
can enhance or weaken a system’s resilience. Consider for example the 
resilience of the ecosystem described in equation (5). The structure of 
the resilience function (Fig. 2m) indicates that the greater is βeff, the 
more resilient is the system, enduring larger perturbations before reach-
ing the bifurcation at βeff

c  and risking a transition to the undesired xL.  
Since mutualistic networks are symmetric we have S=1  and 
H σ σ σ= /〈 〉 ≡ /〈 〉s sin out

2 , obtaining βeff = 〈 〉s  + σ2/〈 〉s . Hence, equation 
(13) increases both with density 〈 〉s  and with heterogeneity H giving 
rise to a 2D phase space: a resilient phase above the phase boundary 

H β〈 〉 + =s eff
c , and a non-resilient phase below it. In Fig. 4d we show 

all fourteen mutualistic networks and their location on the  
〈 〉s –H phase diagram, characterizing the source of each network’s resil-
ience. For instance, Net11 and Net12 have comparable βeff values and 
hence comparable levels of resilience, indicating that both can with-
stand comparable levels of perturbation before crossing the bifurcation 
at βeff

c . However, Fig. 4d shows that while the source of Net11’s resil-
ience is its high density 〈 〉s , the source of Net12’s resilience is its high 
heterogeneity H. To test this we constructed two homogeneous  
networks with the same densities as Net11 and Net12, but with H= 0. 
As expected for Net12, reducing heterogeneity greatly decreased resil-
ience (by ~30%), while for Net11, whose source of resilience is density 
rather than heterogeneity, eliminating H had only a negligible impact 
(Fig. 4d, e).

In regulatory dynamics the phase diagram has two domains, cor-
responding to an active phase and cell death. Here resilience increases 

with βeff, as the larger is βeff, the deeper is the system into the active 
state, and farther from the critical transition at βeff

c  (equation (12)). 
Since Aij is directed, H can both increase or decrease βeff, depending 
on the symmetry S  in equation (13). Consequently, resilience is  
governed by three topological characteristics, where dense, symmet-
ric and heterogeneous networks are most resilient (large βeff), and 
sparse, antisymmetric and heterogeneous networks are least resilient 
(small βeff). The phase diagram in the 〈 〉s –H–S  space is shown  
in Fig. 4f, and the transition between states occurs along the  
plane SH β〈 〉 + =s eff

c . For the two regulatory networks we measured 
S= − .0 083 (for S. cerevisiae) and S= − .0 2464  (for E. coli), both  
negative. Hence here H has a negative contribution to resilience and 
a homogeneous network with H= 0 would, in fact, be more resilient. 
To test this prediction we compared the resilience function of the 
empirical networks (E. coli and S. cerevisiae) with that of the equiva-
lent homogeneous networks in which 〈 〉s  is preserved and H= 0  
(Fig. 4g). Indeed, we find that eliminating heterogeneity increases the 
system’s resilience.

Complex systems are characterized by an inherently multi- 
dimensional parameter space, giving rise to diverse and unpredictable 
behaviour. Here, by reverting to the natural parameter space (β-space) 
we exposed the hidden universal patterns of network resilience. The 
origin of this universality is in the separation of the system’s dynamics 
and topology. Indeed, in most systems the intrinsic behaviour of the 
components and the nature of the interactions between them are invar-
iable to perturbations13. Perturbations only affect the structure of the 
network, Aij, determining who interacts with whom and how strongly. 
Our formalism reduces Aij into an effective 1D system, showing that 
regardless of the specific topology and weights, or the form of pertur-
bation, the patterns of resilience depend only on the system’s intrinsic 
dynamics. The role of the network topology is fully captured by the 

Figure 4 | The impact of Aij on resilience. The topological characteristics 
that affect a system’s resilience through βeff (equation (13)) are: a, the 
network density 〈 〉s ; b, the heterogeneity in degrees or link weights H; and 
c, the symmetry S , capturing the correlations between a node’s in and out 
degrees. d, Phase diagram for mutualistic dynamics in the 〈 〉s –H plane.  
In the resilient phase, the system has a single stable fixed point xH; in the 
non-resilient phase the undesired xL is also stable. For this dynamics the 
greater βeff is (square size) the deeper the system is in the resilient phase.  
e, The average state of the system 〈x〉 versus the average reduction in the 
link weights. For Net12, the most heterogeneous of the fourteen 
mutualistic networks, we observe an extreme degree of resilience, avoiding 
collapse up to fw = 97% (blue triangles). A homogeneous network, with the 

same density and H= 0 loses resilience at fw = 66% (red circles); hence H 
is the source of Net12’s exceptional resilience. As indicated in d, Net11’s 
resilience is rooted in its high density 〈 〉s . Indeed, we find that for Net11, 
both the original (blue triangles) and the homogeneous (red circles) 
networks feature comparable levels of resilience, indicating that H has a 
marginal contribution. f, The phase diagram for directed transcription 
regulatory networks is 3D—〈 〉s , H and S—with the first-order transition 
from a living cell to cell death occurring at SH〈 〉 + =s 2. The position of 
the S. cerevisiae and the E. coli networks is also shown (triangles). g, For 
both organisms S<0, and hence heterogeneity decreases their resilience: 
indeed, the homogeneous networks (red circles) withstand larger 
perturbations than the original networks (blue triangles).
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1D βeff, predicting that density, heterogeneity and symmetry are the 
three key structural factors affecting a system’s resilience. They do not 
alter the critical points, but instead push a system far away from these 
critical points, helping the system to sustain large perturbations. This 
separation of structure and dynamics provides us with testable predic-
tions for the system’s response to different perturbations. It also suggests 
potential intervention strategies to avoid the loss of resilience26–28, or 
design principles for optimal29 resilient systems that can successfully 
cope with perturbations30.
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