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Abstract. Rules over a Knowledge Graph (KG) capture interpretable patterns
in data and various methods for rule learning have been proposed. Since KGs
are inherently incomplete, rules can be used to deduce missing facts. Statistical
measures for learned rules such as confidence reflect rule quality well when the KG
is reasonably complete; however, these measures might be misleading otherwise.
So it is difficult to learn high-quality rules from the KG alone, and scalability
dictates that only a small set of candidate rules is generated. Therefore, the ranking
and pruning of candidate rules is a major problem. To address this issue, we propose
a rule learning method that utilizes probabilistic representations of missing facts.
In particular, we iteratively extend rules induced from a KG by relying on feedback
from a precomputed embedding model over the KG and external information
sources including text corpora. Experiments on real-world KGs demonstrate the
effectiveness of our novel approach both with respect to the quality of the learned
rules and fact predictions that they produce.

1 Introduction

Motivation. Rules are widely used to represent relationships and dependencies between
data items in datasets and to capture the underlying patterns in data [2,27]. Applications
of rules include health-care [40], telecommunications [21], manufacturing [3], and
commerce [30,18]. In order to facilitate rule construction, a variety of rule learning
methods have been developed, see e.g. [10,19] for an overview. Moreover, various
statistical measures such as confidence, actionability, and unexpectedness to evaluate the
quality of the learned rules have been proposed.

Rule learning has recently been adapted to the setting of Knowledge Graphs
(KGs) [12,38,11,34] where data is represented as a graph of entities interconnected via
relations and labeled with classes, or more formally as a set of grounded binary and
unary atoms typically referred to as facts. Examples of large-scale KGs include Wiki-
data [35], Yago [32], NELL [23], and Google’s KG [1]. Since many KGs are constructed
from semi-structured knowledge, such as Wikipedia, or harvested from the Web with a
combination of statistical and linguistic methods, they are inherently incomplete [26,12].

Rules over KGs are of the form head ← body , where head is a binary atom and body
is a conjunction of, possibly negated, binary or unary atoms. When rules are automatically
learned, statistical measures like support and confidence are used to assess the quality of
rules. Most notably, the confidence of a rule is the fraction of facts predicted by the rule
that are indeed true in the KG. However, this is a meaningful measure for rule quality only
when the KG is reasonably complete. For rules learned from largely incomplete KGs,
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confidence and other measures may be misleading, as they do not reflect the patterns in the
missing facts. For example, a KG that knows only (or mostly) male CEOs would yield a
heavily biased rule gender(X ,male)← isCEO(X ,Y ), isCompany(Y ), which does
not extend to the entirety of valid facts beyond the KG. Therefore, it is crucial that rules
can be ranked by a meaningful quality measure, which accounts for KG incompleteness.

Example. Consider a KG about people’s jobs, residence and spouses as well as office
locations and headquarters of companies. Suppose a rule learning method has computed
the following two rules:

r1 : livesIn(X ,Y )← worksFor(X ,Z ), hasOfficeIn(Z ,Y ) (1)
r2 : livesIn(Y ,Z )← marriedTo(X ,Y ), livesIn(X ,Z ) (2)

The rule r1 is quite noisy, as companies have offices in many cities, but employees live
and work in only one of them, while the rule r2 clearly is of higher quality. However,
depending on how the KG is populated with instances, the rule r1 could nevertheless score
higher than r1 in terms of confidence measures. For example, the KG may contain only a
specific subset of company offices and only people who work for specific companies. If
we knew the complete KG, then the rule r2 should presumably be ranked higher than r1.

Suppose we had a perfect oracle for the true and complete KG. Then we could learn
even more sophisticated rules such as

r3 : livesIn(X ,Y )← worksFor(X ,Z ), hasHeadquarterIn(Z ,Y ),not locatedIn(Y ,USA).

This rule would capture that most people work in the same city as their employers’
headquarters, with the USA being an exception (assuming that people there are used to
long commutes). This is an example of a rule that contains a negated atom in the rule
body (so it is no longer a Horn rule) and has a partially grounded atom with a variable
and a constant as its arguments.

Problem. The problem of KG incompleteness has been tackled by methods that (learn to)
predict missing facts for KGs (or actually missing relational edges between existing enti-
ties). A prominent class of approaches is statistics-based and includes tensor factorization,
e.g. [25] and neural-embedding-based models, e.g. [4,24]. Intuitively, these approaches
turn a KG, possibly augmented with external sources such as text [39,41], into a probabilis-
tic representation of its entities and relations, known as embeddings, and then predict the
likelihood of missing facts by reasoning over the embeddings (see, e.g. [36] for a survey).

These kinds of embeddings can complement the given KG and are a potential asset
in overcoming the limitations that arise from incomplete KGs. Consider the following
gedankenexperiment: we compute embeddings from the KG and external text sources,
that can then be used to predict the complete KG that comprises all valid facts. This
would seemingly be the perfect starting point for learning rules, without the bias and
quality problems of the incomplete KG. However, this scenario is way oversimplified.
The embeddings-based fact predictions would themselves be very noisy, yielding also
many spurious facts. Moreover, the computation of all fact predictions and the induction
of all possible rules would come with a big scalability challenge: in practice, we need
to restrict ourselves to computing merely small subsets of likely fact predictions and
promising rule candidates.
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Approach. In this work we propose an approach for rule learning guided by external
sources that allows to learn high-quality rules from incomplete KGs. In particular, our
method extends rule learning by exploiting probabilistic representations of missing facts
computed by embedding models of KGs and possibly other external information sources.
We iteratively construct rules over a KG and collect feedback from a precomputed
embedding model, through specific queries issued to the model for assessing the quality
of (partially constructed) rule candidates. This way, the rule induction loop is interleaved
with the guidance from the embeddings, and we avoid scalability problems. Our machinery
is also more expressive than many prior works on rule learning from KGs, by allowing
non-monotonic rules with negated atoms as well as partially grounded atoms. Within this
framework, we devise confidence measures that capture rule quality better than previous
techniques and thus improve the ranking of rules.

Contribution. The salient contributions of our work are as follows.

– We propose a rule learning approach guided by external sources, and show how to
learn high-quality rules, utilizing feedback from embedding models.

– We implement our approach and present extensive experiments on real-world KGs,
demonstrating the effectiveness of our approach with respect to both the quality of
the learned rules and the fact predictions that they produce.

– Our code and data are made available to the research community at
http://people.mpi-inf.mpg.de/~gadelrab/RuLES/

2 Rule Learning Guided by External Sources

In this section we first give some necessary preliminaries, then we introduce our frame-
work for rule learning guided by external sources, discuss challenges associated with it,
and finally propose a concrete instantiation of our framework with embedding models.

2.1 Background

We assume countable setsR of unary and binary relation names and C of constants. A
knowledge graph (KG) G is a finite set of ground atoms a of the form P (b, c) and C(b)
overR∪ C. With ΣG , the signature of G, we denote elements ofR∪ C that occur in G.

We define rules over KGs following the standard approach of non-monotonic logic
programs under the answer set semantics [13]. Let X be a countable set of variables. A
rule r is of the form head ← body ,where head , or head(r), is an atom overR∪C∪X and
body, or body(r), is a conjunction of positive and negative atoms overR∪C∪X . Finally,
body+(r) and body−(r) denote the atoms that occur in body(r) positively and negatively
respectively, that is, the rule can be written as head(r)← body+(r),not body−(r). A
rule is Horn, if all head variables occur in the body, and body−(r) is empty.

We define execution of rules with default negation [13] over KGs in the standard
way. More precisely, let G be a KG, r a rule over ΣG , and a be an atom over ΣG . Then,
r |=G a holds if there is a variable assignment that maps atoms body+(r) in G such that
it does not map any of the atoms in body−(r) in G. Then, let Gr = G ∪ {a | r |=G a}.
Intuitively, Gr extends G with edges derived from G by applying r.

http://people.mpi-inf.mpg.de/~gadelrab/RuLES/
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2.2 Problem Statement and Proposal of General Solution

Let G be a KG over the signature ΣG = (RG , CG). A probabilistic KG P is a pair
P = (G, f) where f : RG × CG × CG → [0, 1] is a probability function over the facts
over ΣG such that for each atom a ∈ G it holds that f(a) = 1.

The goal of our work is to learn rules that not only describe the available graph G
well, but also predict highly probable facts based on the function f . The key questions
now are how to define the quality of a given rule r based on P and how to exploit this
quality during rule learning for pruning out not promising rules.

A quality measure µ for rules over probabilistic KGs is a function µ : (r,P) 7→ α,
where α ∈ [0, 1]. In order to measure the quality µ of r over P we propose:

– to measure the quality µ1 of r over G, where µ1 : (r,G) 7→ α ∈ [0, 1], and
– to measure the quality µ2 ofGr by relying onPr = (Gr, f), where µ2: (G′, (G, f)) 7→
α∈ [0, 1] for G′ ⊇ G is the quality of extensions G′ of G over ΣG given f , and

– to combine the result as the weighted sum.

That is, we define our hybrid rule quality function µ(r,P) as follows:

µ(r,P) = (1− λ)× µ1(r,G) + λ× µ2(Gr,P). (3)

In this formula µ1 can be any classical quality measure of rules over complete graphs.
Intuitively, µ2(Gr,P) is the quality of Gr wrt f that allows us to capture the information
about facts missing in G that are relevant for r. The weighting factor λ, we call it
embedding weight, allows one to choose whether to rely more on the classical measure
µ1 or on the measure µ2 of the quality of the facts that are predicted by r over G.

Challenges. There are several challenges that one faces when realising our approach.
First, given an incomplete G, one has to define f such that (G, f) satisfies the expectations,
i.e., reflects well the probabilities of missing facts. Second, one has to define µ1 and
µ2 that also satisfy the expectations and admit efficient implementation. Finally, the
adaptation of existing rule learning approaches to account for the probabilistic function f
without the loss of scalability is not trivial. Indeed, materializing f by augmenting G with
all possible probabilistic facts over ΣG and subsequently applying standard rule learning
methods on the obtained graph is not practical. Storing such potentially enormous
augmented graph where many probabilistic facts are irrelevant for the extraction of
meaningful rules might be simply infeasible.

2.3 Realization of General Solution

We now describe how we addressed the above stated challenges. In Section 2.3 we present
concrete realizations of f , µ1 and µ2, and in Section 3 we discuss how we implemented
them and adapted within an end-to-end rule learning system.

Realization of the probabilistic function f . We propose to define f by relying on
embeddings of KGs. Embeddings are low-dimensional vector spaces that represent nodes
and edges of KGs and can be used to estimate the likelihood (not necessary probability) of
potentially missing binary atoms using a scoring function ξ : R× C × C → IR. Examples
of concrete scoring functions can be found, e.g., in [36]. Since embeddings per se are
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Fig. 1: An example of a knowledge graph.

not in the focus of our paper, we will not give further details on them and refer the
reader to [36] for an overview. Note that our framework is not dependent on a concrete
embedding model. What is important for us is that embeddings can be used to construct
probabilistic representations [24] of atoms missing in KGs and we use this to define f .

Consider an auxiliary definition. Given a KG G, and an atom a = p(s, o), the set Gs
consists of a and all atoms a′ that are obtained from a by replacing s with a constant
from ΣG , except for those that are already in G. Then, given a scoring function ξ, [Gs] is
a list of atoms from Gs ordered in the descending order. Finally, the subject rank [14] of
a given ξ, subject rankξ(a) is the position of a in [Gs]. Analogously one can define [Go]
and the corresponding object rank [14] of a given ξ, that is, object rankξ(a).

Now we are ready to define the function f for an atom a as the average of its subject
and object inverted ranks given ξ [14], i.e.:

fξ(a) = 0.5× (1/subject rankξ(a) + 1/object rankξ(a)).

Realization of µ1. This measure should reflect the descriptive quality of a given rule r
with respect to G. There are many classical data mining measures that can be used as µ1,
see, e.g. [22,12,33,44] for µ1s proposed specifically for KGs.

In our work we selected the following two measures for µ1: confidence and PCA
confidence [12], where PCA stands for the partial completeness assumption, that can be
defined using rule support, r-supp, partial rule support, pr-supp, and body support, b-supp
as follows. Let r : head ← body+,not body− be a rule and x a variable occurring in
head , and let h denote a variable assignment that we with a slight abuse of notation use
as a homomorphism on (sets of) atoms. Then,

r-supp(r,G) := |{h | h(head) ∈ G,∃h′ ⊇ h s.t. h′(body+) ∈ G, h′(body−) 6∈ G}|,
pr-supp(r,G) := |{h | h(head) 6∈ G,∃h′ s.t. h(x) = h′(x), h′(head) ∈ G, and

h(body+) ∈ G, h(body−) 6∈ G}|,
b-supp(r,G) := |{h | h(body+) ∈ G, h(body−) 6∈ G}|.

Finally, we are ready to define confidence and PCA confidence:

conf (r,G) := r-supp(r,G)/b-supp(r,G),
confpca(r,G) := r-supp(r,G)/pr-supp(r,G).
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Intuitively, confidence of a rule is the conditional probability of rule’s head given its
body, while PCA confidence is its generalisation to the open world assumption (OWA),
which does not penalize rules that predict facts p(s, o), such that p(s, o′) 6∈ G for any o′.

Example 1. Consider the KG G in Fig. 1 and recall the rules r1 and r2 from Equa-
tions (1)-(2). For r1, we have conf (r1 ,G) = confpca(r1 ,G) = 3

6 , while for r2 it holds
that conf (r2 ,G) = confpca(r2 ,G) = 1

3 . If Alice was not known to live in Germany,
then confpca(r2 ,G) = 1

2 . Finally, for the following rule with negation

r4 : livesIn(Y ,Z )← marriedTo(X ,Y ), livesIn(X ,Z ),not researcher(X ),

that states that married people live together unless one is a researcher, and G′ = G ∪
{researcher(bob)}, we have conf (r4 ,G′) = confpca(r4 ,G′) = 1

2 . ut

Realization of µ2. There are various ways how one can define the quality µ2(Gr,P)
of Gr. A natural candidate to define the quality of Gr is the probability of Gr, that is,
as µ2(Gr,P) =

∏
a∈Gr f(a)×

∏
a∈(RG×CG×CG)\Gr (1− f(a)). A disadvantage of such

quality measure is that in practice it will be very low, as the product of many (potentially)
small probabilities, and thus Equation 3 will be heavily dominated by µ1(r,G). Therefore,
we advocate to define µ2(Gr,P) as the average probability of a fact in Gr:

µ2(Gr,P) = (Σa∈Gr\Gf(a))/|Gr\G|.

Example 2. Consider the KG G in Figure 1, and the rules from Equations (1)-(2) with
their confidence values as presented in Example 1. Suppose that a text-enhanced embed-
ding model produced a relatively accurate estimation of the probabilities of facts over
livesIn relation. For example, even though within the graph there is no direct connection
between Germany and Berlin, relying on the living places of entities similar to John and
hidden semantic relations between Germany and Berlin such as co-occurrences in text and
other linguistic features, for the fact a = livesIn(john, berlin) we obtained f(a) = 0.9,
while for a′ = livesIn(john, france), a much lower probability f(a′) = 0.09. These
naturally support the predictions of r2 but not those of r1.

Generalising this idea, assume that on the whole dataset we get µ2 (Gr1 ,P) = 0.1
and µ2 (Gr2 ,P) = 0 .8 , where P = (G, f). Thus, for λ = 0.5 we have µ(r1,P) =
(1−0.5)×0.5+0.5×0.1 = 0.3, while for µ(r2,P) = (1−0.5)× 1

3 +0.5×0.8 ≈ 0.57,
resulting in the desired ranking of r2 over r1 based on µ. ut

3 System Implementation

In this section we describe our end-to-end rule learning system with embedding support.
Conceptually, our system generalizes the standard relational association rule learners
[12,15] to account for the feedback from the probabilistic function f . Following common
practice [12] we restrict ourselves to rules that are closed, where every variable appears
at least twice, and safe, where the Horn part is closed.

Overview. The input of the system are a KG, possibly a text corpus, and a set of user
specified parameters that are used to terminate rule construction. These parameters include
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Fig. 2: Overview of our system.

an embedding weight λ, a minimum threshold for µ1, a minimum rule support r-supp and
other rule-related parameters such as a maximum number of positive and negative atoms
allowed in body(r). The KG and text corpus are used to train the embedding model that
in turn is used to construct the probabilistic function f . The rules r are constructed in the
iterative fashion, starting from the head, by adding atoms to its body one after another
until at least one of the termination criteria (that depend on f ) is met. In parallel with the
construction of r the quality µ(r) is computed.

In Figure 2 we present a high level architecture of our system, where arrows depict
information flow between blocks. The Rule Learning block constructs rules over the
input KG, Rule Evaluation supplies it with quality scores µ for rules r, using G and f ,
where f is computed by the Embedding Model block from G and text.

We now discuss the algorithm behind the Rule Learning block in Figure 2. Following
[12] we model rules as sequences of atoms, where the first atom is the head of the rule and
other atoms are its body. The algorithm maintains a priority queue of intermediate rules
(see the Rules Queue block in Figure 2). Initially all possible binary atoms appearing in
G are added to the queue with empty bodies. At each iteration, a single rule is selected
from the queue. If the rule satisfies the filtering criteria (see the Filer rules block) which
we define below, then the system returns it as an output. If the rule is not filtered, then it
is processed with one of the refinement operators (see the Refine rules block) that we
define below that expand the rule with one more atom and produce new rule candidates,
which are then pushed into the queue (if not being pushed before). The iterative process
is repeated until the queue is empty. All the reported rules will be finally ranked by the
decreasing order of the hybrid measure µ, computed in Collect statistics block.

In the remainder of the section we discuss refinement operators and filtering criteria.

Refinement operators. We rely on the following three standard refinement operators
[12] that extend rules:

(i) add a positive dangling atom: add a new positive atom with one fresh variable and
another one appearing in the rule, i.e., shared.

(ii) add a positive instantiated atom: add a positive atom with one argument being a
constant and the other one being a shared variable.

(iii) add a positive closing atom: add a positive atom with both of its arguments being
shared variables.

Additionally, we introduce two more operators to allow negated atoms in rule bodies:
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(iv) add an exception instantiated atom: add a negated atom with one of its arguments
being a constant, and the other one being a shared variable.

(v) add an exception closing atom: add a binary negated atom to the rule with both of its
arguments being shared variables or a unary negated atom with a shared variable.

These two operators are only applied to closed rules to ensure the safety condition.
Moreover, we also require the satisfaction of the following condition: for a rule
r : head(r)← body+(r) the addition of an exception atom should result in the
rule r′ : head(r)← body+(r), body−(r), such that r-supp(r ,G) = r-supp(r ′,G). Intu-
itively, the application of exception refinement operator must not lead to the decrease of
the rule support, i.e., exceptions should explain the absence of predictions expected to be
in the graph rather then their presence.

Filtering criteria. After applying one of the refinement operators to a rule, a set of
candidate rules is obtained. For each candidate rule we first verify that the hybrid measure
µ has increased and discard the rule if it does not. Then, we compute its h-cover [12] and
our novel exception confidence measure e-conf that are defined as follows:

h-cover(r,G) := r-supp(r,G)/|{h | h(head(r,G)) ∈ G}|,
e-conf(r,G) := conf(r′,G),

where r′ : body−(r)← body+(r), not head(r). If the h-cover and e-conf are below the
user specified threshold, then the rule is discarded. Intuitively, h-cover quantifies the ratio
of the known true facts that are implied by the rule. In contrast, e-conf is the conditional
probability of the exception given predictions produced by the Horn part of r, which
helps to disregard insignificant exceptions, i.e., those that explain the absence in G of
only a small fraction of predictions made by head(r)← body+(r), as such exceptions
likely correspond to noise. Observe that not all of the filtering criteria are relevant for all
rule types. For example, exception confidence is relevant only for non-monotonic rules to
ensure the quality of the added exceptions.

Finally, note that by exploiting the embedding feedback, we can now distinguish
exceptions from noise. Consider the rule stating that married people live together. This
rule can have several possible exceptions, e.g., either one of the spouses is a researcher
or he/she works at a company, which has headquarter in the US. Whenever the rule is
enriched with an exception, naturally, the support of its body decreases, i.e., the size of
Gr goes down. Ideally, we want to add such negated atoms, that the average quality of
Gr increases, as this will witness that by adding negated atoms to the rule we get rid of
unlikely predictions.

4 Evaluation
We have implemented our hybrid rule learning approach in Java within a system prototype
RuLES, and conducted experiments on a Linux machine with 80 cores and 500GB RAM.
In this section we report the results of our experimental evaluation, which focuses on (i)
the benefits of our hybrid embedding-based rule quality measure over traditional rule
measures; (ii) the effectiveness of RuLES against the state-of-art Horn rule learning
systems; and (iii) the quality of non-monotonic rules learned by RuLES compared to
existing methods.
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4.1 Experimental Setup

Datasets. We performed experiments on the following two real world datasets:

– FB15K [4]: a subset of Freebase with 592K binary facts over 15K entities and 1345
relations commonly used for evaluating KG embedding models [36].

– Wiki44K: a dataset with 250K binary facts over 44K entities and 100 relations, which
is a subset of Wikidata dataset from December 2014 used in [12].

In the experiments for each incomplete KG G we need its ideal completion Gi that
would give us a gold standard for evaluating our approach and comparing it to others.
Since obtaining a real life Gi is hard, we used the KGs FB15K and Wiki44K as reference
graphs Giappr that approximate Gi. We then constructed G by randomly selecting 80% of
its facts while preserving the distribution of facts over predicates.

Embedding models. We experimented with the three state-of-the-art embedding models:
TransE [4], HolE [24], and the text-enhanced SSP [41] model. We reuse the implementa-
tion of TransE, HolE1, and SSP2. TransE and HolE were trained on G and SSP on G
enriched with a textual description for each entity extracted from Wikidata. We compared
the effectiveness of the models and selected for every KG the best one. Apart from SSP,
which showed the best performance on both KGs, we also selected HolE for FB15K and
TransE for Wiki44K. Note that in this work as a proof of concept we considered some of
the most popular embedding models, but conceptually any model (see [36] for overview)
can be used in our system.

Evaluation metric. To evaluate the learned rules we use the quality of predictions that
they produce when applied on G, i.e., the more correct facts beyond G a ruleset produces,
the better it is. We consider two evaluation settings: closed world setting (CW) and open
world setting (OW). In the CW setting, we define the prediction precision of a rule r and
a set of rules R as

pred precCW (r) =
|Gr ∩ Giappr \ G|
|Gr \ G|

, pred precCW (R) =

∑
r∈R

pred precCW (r)

|R|
.

In the OW setting, we also take into account the incompleteness of Giappr and consider
the quality of predictions outside it by performing a random sampling and manually
annotating the sampled facts relying on Web resources such as Wikipedia. Thus, we
define the OW prediction precision pred precOW for a set of rules R as follows:

pred precOW (R) =
|G′ ∩ Giappr |+ |G′\Giappr | × accuracy(G′\Giappr )

|G′|
,

where G′ =
⋃
r∈R Gr\G is the union of predictions generated by rules in R, and

accuracy(S ) is the approximated ratio of true facts inside S computed via manual
checking of facts sampled from S. For simplicity, Prec. is used in tables to refer to

1 https://github.com/mnick/scikit-kge
2 https://github.com/bookmanhan/Embedding
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Fig. 3: Avg. prediction precision of the top-k rules with various embedding weights.

pred precOW . Finally, to evaluate the meaningfulness of exceptions in a rule (i.e.,
negated atoms) we compute the revision precision, which according to [34] is defined as
the ratio of incorrect facts in the difference between predictions produced by the Horn
part of a rule and its non-monotonic version over the total number of predictions in this
difference (the higher the revision precision, the better the rule exceptions) computed per
ruleset. Formally,

rev precOW (R) = 1−
|G′′ ∩ Giappr |+ |G′′\Giappr | × accuracy(G′′\Giappr )

|G′′|
,

where G′′ = GH\GR and H is the set of Horn parts of rules in R. Intuitively, G′′ contains
facts not predicted by the rules in R but predicted by their Horn versions.

RuLES configuration. We run RuLES in several configurations where µ1 is set to
either standard confidence (Conf) or PCA confidence (PCA), and µ2 is computed based
on either TransE, HolE, or SSP models. Through the experiments the configurations are
named as µ1-µ2 (e.g., Conf-HolE).

4.2 Embedding-Based Hybrid Quality Function

In this experiment we study the effect of using our hybrid embedding-based rule measure
µ from Equation 3 on the rule ranking compared to traditional measures. We do it
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top-k
FB15K Wiki44K

Conf PCA Conf-HolE Conf-SSP Conf PCA Conf-TransE Conf-SSP
(λ = 0) (λ = 0) (λ = 0.3) (λ = 0.3) (λ = 0) (λ = 0) (λ = 0.3) (λ = 0.3)

5 0.800 0.638 1.000 1.000 0.800 0.402 0.995 0.968
10 0.900 0.506 1.000 1.000 0.638 0.321 0.863 0.932
20 0.900 0.499 0.950 1.000 0.712 0.357 0.802 0.825
50 0.881 0.410 0.936 0.937 0.670 0.352 0.675 0.674

100 0.855 0.348 0.885 0.895 0.477 0.331 0.474 0.474
200 0.842 0.355 0.870 0.875 – – – –
Table 1: Avg. prediction precision of the rules learned using different measures.

top-k
FB15K Wiki44K

AMIE-PCA AMIE-Conf RuLES AMIE-PCA AMIE-Conf RuLES
Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec.

20 1029 0.28 82 0.63 44 1.00 185 0.73 91 0.95 3291 0.98
50 1716 0.43 190 0.74 186 0.92 47099 0.10 3594 0.95 6154 0.88

100 3085 0.65 255 0.78 539 0.80 56831 0.20 13870 0.83 13253 0.82
200 10586 0.62 1210 0.83 1205 0.88 82288 0.39 19538 0.72 20408 0.73
500 40050 0.51 2702 0.75 7124 0.95 219264 0.35 124836 0.23 128256 0.48

Table 2: Prediction precision of the top-k rules generated by RuLES and AMIE.

by first learning rules of the form r : h(X,Z) ← p(X,Y ), q(Y,Z) from G where
r-supp(r ,G) ≥ 10 , conf (r ,G) ∈ [0 .1 , 1 ) and h-cover(r ,G) ≥ 0 .01 . Then, we rank
these rules using Equation 3 with λ ∈ {0, 0.1, 0.2, . . . , 1}, µ1 ∈ {conf , confpca} and
with µ2 that is computed by relying on TransE, HolE and SSP. Note that λ = 0
corresponds to the standard rule measure µ1 alone.

Figure 3 shows the average prediction precision pred precCW of the top-k rules
ranked using our measure µ for different embedding weights λ (x axis). In particular, in
Figures 3a, 3b, 3d, and 3e we observe that combining confidence with any embedding
model results in the increase in the average prediction precision for 0 ≤ λ ≤ 0.3.
Moreover, we observe the decrease of prediction precision for 0.4 ≤ λ ≤ 1 and top-k
rules learned from FB15K when k ≥ 20 and from Wiki44K when k ≥ 10. This shows
that the combination of µ1 and µ2 gives noticeable positive effect on the prediction
results. On the other hand, for µ1 = confpca the precision increases significantly when
combined with embedding models and only decreases slightly for λ = 1 (Figures 3c,3f).
Utilizing confpca instead of conf as µ1 in our hybrid measure is less effective, since
our training data G is randomly sampled breaking the partial completeness assumption
adopted by the PCA confidence.

Table 1 compactly summarizes the average prediction precision of top-k rules ranked
by the standard rule measures and our µ for the best value of λ = 0.3 and highlights the
effect of using the better embedding model (text-enhanced vs standard). We observe that
the accuracy of a utilized embedding model is naturally propagated to the accuracy of the
rules that we obtain using our hybrid ranking measure µ. This demonstrates that the use
of a better embedding model positively effects the quality of learned rules.



12

top-k
Family

NeuralLP Conf-TransE
Facts Prec. Facts Prec.

10 3709 0.72 4201 0.68
20 8821 0.53 6957 0.72
30 11337 0.49 9368 0.71
40 14662 0.46 11502 0.72
50 18768 0.40 14547 0.62

Table 3: Prediction precision of the top-k rules generated by NeuralLP and RuLES.

r1: nationality(X ,Y )← graduated from(X ,Z ), in country(Z ,Y ), not research uni(Z )
r2: scriptwriter of (X,Y )← preceded by(X ,Z ), scriptwriter of (Z ,Y ), not tv series(Z )
r3: noble family(X ,Y )← spouse(X ,Z ),noble family(Z ,Y ), not chinese dynasties(Y )

Table 4: Example rules with exception generated by RuLES.

4.3 Horn Rule Learning

In this experiment, we compare RuLES under Conf-SSP configuration (with embedding
weight λ = 0.3) with the state-of-art Horn rule learning system AMIE. We used the
default AMIE-PCA configuration with confpca and AMIE-Conf with conf measures
respectively. For a fair comparison, we set the two configurations of AMIE and our system
to generate rules with at most three positive atoms in the body and filtered them based
on minimum confidence of 0.1, head coverage of 0.01 and rule support of 10 in case of
FB15K and 2 in case of Wiki44K. We then filtered out all rules with conf (r ,G) = 1 , as
they do not produce any predictions.

Table 2 shows the number of facts (see the Facts column) predicted by the set R of
top-k rules in the described settings and their prediction precision pred precOW (R) (see
the Prec. column). The size of the random sample outside Giappr is 20. We can observe
that on FB15K, RuLES consistently outperforms both AMIE configurations. The top-20
rules have the highest precision difference (outperforming AMIE-PCA and AMIE-Conf
by 72% and 37% respectively). This is explained by the fact that the hybrid embedding
quality penalizes rules with higher number of false predictions. For Wiki44K, RuLES is
capable of achieving better precision in most of the cases. Notably, for the top-20 rules
RuLES predicted significantly more facts then competitors yet with a high precision.

In table 3, we compare RuLES with the recently developed NeuralLP system [43].
For this we used the Family dataset offered by the authors3 with 28K facts over 3K
entities and 12 relations. Starting from the top-20 rules RuLES is capable of achieving
significantly better precision. For the top-10 rules the precision of NeuralLP is slightly
better, but RuLES predicts many more facts.

More experiments and analysis on different datasets are provided in the technical
report at http://people.mpi-inf.mpg.de/~gadelrab/RuLES/.

4.4 RuLES for Exception-Aware Rule Learning

In this experiment, we aim at evaluating the effectiveness of RuLES for learning exception-
aware rules. First, consider in Table 4 examples of such rules learned by RuLES over
Wiki44K dataset. The first rule r1 says that a person is a citizen of the country where

3 https://github.com/fanyangxyz/Neural-LP

http://people.mpi-inf.mpg.de/~gadelrab/RuLES/
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top-k
FB15K Wiki44K

RUMIS RuLES RUMIS RuLES
Facts Prec. Facts Prec. Facts Prec. Facts Prec.

20 672 0.95 34 0.97 5844 0.93 5640 0.93
50 1797 0.94 158 0.99 8585 0.83 13333 0.84
100 2672 0.94 434 0.99 21081 0.76 25265 0.81
200 4103 0.87 1155 0.96 50957 0.51 43677 0.67
500 13439 0.76 5466 0.90 – – – –

Table 5: Prediction precision for the top-k rules learned by RUMIS and RuLES.

top-k
FB15K Wiki44K

RUMIS RuLES RUMIS RuLES
Facts Prec. Facts Prec. Facts Prec. Facts Prec.

20 76 0.70 111 0.68 63 0.47 81 0.94
50 126 0.51 435 0.74 191 0.28 611 0.69

100 183 0.43 680 0.76 543 0.49 1698 0.79
200 310 0.30 1112 0.87 4861 0.40 3175 0.80
500 1155 0.53 3760 0.59 – – – –

Table 6: Revision precision for the top-k rules learned by RUMIS and RuLES.

his alma mater is located, unless it is a research institution, since most researchers in
universities are foreigners. The second rule r2 states that the scriptwriter of some artistic
work is also the scriptwriter of its sequel unless it is a TV series, which actually reflects
the common practice of having several screenwriters for different seasons. Additionally,
r3 encodes that someone belonged to a noble family if his/her spouse is also from the
same noble family, excluding the Chinese dynasties.

To quantify the quality of RuLES in learning non-monotonic rules, we compare
the Conf-SSP configuration of RuLES (with embedding weight λ = 0.3) with RU-
MIS [34] as a non-monotonic rule revision system which finds exceptions by min-
imizing the conflicts between the induced rules. RUMIS learns rules of the form
r : h(X ,Z )← p(X ,Y ), q(Y ,Z ),not E , where E is either e(X,Z) or type(X, t)
with t ∈ C. For a fair comparison we restricted RuLES to learn rules of the same
form. We configured both systems setting the minimum rule support threshold to 10
and exception confidence for RuLES to 0.05. To enable the systems to learn rules with
exceptions of the form type(X, t), we enriched the KGs with type information from the
original Freebase and Wikidata graphs.

Table 5 reports the number of predictions produced by a rule set R of top-k non-
monotonic rules learned by both systems as well as their precision pred precOW (R)
with a sample of 20 prediction outside Giappr. The results show that RuLES consistently
outperforms RUMIS on both datasets. For Wiki44K, and k ∈ {50, 100}, the top-k rules
produced by RuLES predicted more facts than those induced by the competitor achieving
higher overall precision. Regarding the number of predictions, the converse holds for the
FB15K KG; however, however the rules learned by RuLES are still more accurate.

To evaluate the quality of the chosen exceptions, we compare the rev precOW (R)
with a sample of 20 predictions. Observe that in Table 6, rules induced by RuLES
prevented the generation of more facts than RUMIS. In all of the cases apart from top-10
for FB15K, our system managed to remove a larger fraction of erroneous predictions. For
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Wiki44K, RuLES consistently performs twice as good as RUMIS. In conclusion, the
guidance from the embedding model exploited in our system gives us hints on which
among the possible exception candidates likely correspond to noise.

5 Related Work

Inductive Logic Programming (ILP) addresses the problem of rule learning from data. In
its probabilistic setting, given a set of probabilistic examples for grounded atoms and
a target predicate p, the task is to learn rules for predicting probabilities of atoms for
p [29,28,7]. Applying these techniques to our setting requires a full materialization of the
probability function f , which quickly grows to sizes that ILP methods cannot handle.

A recently proposed differentiable ILP framework [9] has advantages over traditional
ILP in its robustness to noise and errors in the underlying data. However, [9] requires
negative examples, which in our case are hard to get due to the large KG size. Moreover,
[9] is memory-expensive as authors admit, and cannot scale to the size of modern KGs.

Unsupervised relational association rule learning systems such as [15,12] induce
logical rules from the data by mining frequent patterns and casting them into rules. In the
context of KGs [12,5,34] such approaches address the incompleteness of KGs by exploit-
ing sophisticated measures over the original graph, possibly enhanced with a schema
[8,20] or constraints on the number of missing edges [33]. However, these methods do
not tap any unstructured information like we do. Indeed, our hybrid embedding-based
measure allows us to conveniently account for unstructured information implicitly via
embeddings as well as making use of various graph-based rule metrics.

Exploiting embedding models for rule learning is a new research direction that has
recently gained attention [43,42]. To the best of our knowledge, existing methods are
purely statistics-based, i.e., they reduce the rule learning problem to algebraic operations
on neural-embedding-based representations of a given KG. [42] constructs rules by
modeling relation composition as multiplication or addition of two relation embeddings.
The authors of [43] propose a differentiable system for learning models defined by
sets of first-order rules that exploits a connection between inference and sparse matrix
multiplication [6]. However, existing approaches pose strong restrictions on target
rule patterns, which often prohibit learning interesting rules, e.g. non-chain-like or
exception-aware ones, which we support.

Another line of work concerns enhancing embedding models with rules and con-
straints, e.g. [37,17,31,16,37]. While our direction is related, we pursue a different goal
of leveraging the feedback from embeddings to improve the quality of the learned rules.
To the best of our knowledge, this idea has not been considered in any prior work.

6 Conclusion

We presented a method for learning rules that may contain negated atoms from KGs
that dynamically exploits feedback from a precomputed embedding model. Our approach
is general in that any embedding model can be utilized including text-enhanced ones,
which indirectly allows us to harness unstructured web sources for rule learning. We
evaluated our approach with various configurations on real-world datasets and observed
significant improvements over state-of-the-art rule learning systems.
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An interesting future direction is to extend our work to more complex non-monotonic
rules with higher-arity predicates, aggregates and existential variables or disjunctions in
rule heads. This requires major extensions for incorporating embedding models while
avoiding scalability problems.
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