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Is Your Machine Better Than You? You May Never Know.

Francis de Véricourt, Huseyin Gurkan*
ESMT Berlin, {francis.devericourt, huseyin.gurkan}@esmt.org

Artificial intelligence systems are increasingly demonstrating their capacity to make better predictions than

human experts. Yet, recent studies suggest that professionals sometimes doubt the quality of these systems

and overrule machine-based prescriptions. This paper explores the extent to which a decision maker (DM)

supervising a machine to make high-stake decisions can properly assess whether the machine produces better

recommendations. To that end, we study a set-up, in which a machine performs repeated decision tasks (e.g.,

whether to perform a biopsy) under the DM’s supervision. Because stakes are high, the DM primarily focuses

on making the best choice for the task at hand. Nonetheless, as the DM observes the correctness of the

machine’s prescriptions across tasks, she updates her belief about the machine. However, the DM observes

the machine’s correctness only if she ultimately decides to act on the task. Further, the DM sometimes

overrides the machine depending on her belief, which affects learning. In this set-up, we characterize the

evolution of the DM’s belief and overruling decisions over time. We identify situations under which the

DM hesitates forever whether the machine is better, i.e., she never fully ignores but regularly overrules it.

Moreover, the DM sometimes wrongly believes with positive probability that the machine is better. We

fully characterize the conditions under which these learning failures occur and explore how mistrusting the

machine affects them. Our results highlight some fundamental limitations in determining whether machines

make better decisions than experts and provide a novel explanation for human-machine complementarity.

Key words : machine accuracy, decision making, human-in-the-loop, algorithm aversion, dynamic learning

1. Introduction

The adoption of machine learning (ML) algorithms is revolutionizing the delivery of products

and services (McKendrick 2021), especially in domains that require human expertise, such as the

medical and judiciary sectors. Indeed, artificial intelligence tools have demonstrated a capability

to produce higher quality predictions than human judgment for many decision tasks (Grady 2019,

Reardon 2019). The deployment of these tools in practice, however, has been limited (Wiens et al.

2019) and challenged by the tendency of decision makers to override algorithmic prescriptions.

For instance, Sun et al. (2021) find in warehouse operations that employees significantly deviated

from the recommendations of an algorithm. Lebovitz et al. (2022) also report how a team of

*The authors are grateful to Santiago R. Balseiro, Denis Gromb, Jean Pauphilet and the seminar attendees at Yale

University, Dartmouth College, HEC Paris, The Catholic University of Portugal, ML Approaches for Finance and

Management conference at Humboldt University of Berlin, Bilkent University and the European Decision Science

seminar for their valuable comments.
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radiologists in a large US-based hospital abandoned different ML algorithms after using them for

several months.

This tendency to override algorithms is typically attributed to an intrinsic mistrust of machine-

based predictions, sometimes referred to as an algorithm aversion (Dietvorst et al. 2015, Gaube

et al. 2021). This bias, however, may not be the sole reason for inappropriately and systematically

overriding an algorithm. A perhaps more fundamental question remains: to which extent the nature

of the decision problem and its context prevent the decision maker from learning whether a machine

produces better prescriptions.

In this paper, we explore fundamental limitations in a decision maker’s ability to properly learn

whether a machine is superior to human expertise. Importantly, these limitations do not stem

from a mistrust bias against the machine. We focus on situations where the algorithm is deployed,

that is, after it has been properly trained and evaluated on representative data sets (see Kubat

2017), and possibly shown better-than-human accuracy levels. These datasets, however, never fully

capture the ground truth, and the issue of empirical generalizability remains (see, e.g., Lebovitz

et al. 2021). Thus, an expert may continue to observe and adjust her belief about the machine

after adopting it. However, because the machine is deployed and, hence, makes prescriptions with

real consequences, learning can be impaired in ways that do not exist during the training phase of

the algorithm.

In particular, the correctness of a machine’s prediction is not always observable once the machine

is deployed. Further, the decision maker cannot always experiment with real cases to learn more

about the machine’s actual accuracy. This is especially true for high-stake decisions found, for

instance, in the medical and judiciary sectors. Our goal is thus to study how these limitations may

induce the expert to mislearn whether a machine is superior to her own judgment.

To that end, we analyze a set-up, in which a machine performs repeated decision tasks under

the supervision of a decision maker (DM). Each task consists in deciding whether or not to take

a specific action. This corresponds, for instance, to deciding on a biopsy in a medical context. To

make this choice, the machine produces a recommendation that the DM may overrule based on

her own expertise. Crucially, the DM is uncertain about whether the machine makes better or

worse decisions than she does, but as the DM observes the correctness of the different machine’s

prescriptions, she forms a belief about the machine’s true accuracy.

We consider situations in which the DM observes the correctness of the machine’s prediction and

updates her belief accordingly only if the action is actually taken (e.g., when a biopsy is performed).

In other words, the DM is subject to a form of selection bias referred to as verification bias in the

statistic literature, such that the results of diagnostic tests determine whether the true state of the

world (the presence or absence of disease) is verified (e.g., Pepe 2003, p. 169). Further, the DM
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only decides what is best for the task at hand and thus never acts for the purpose of observing the

machine’s accuracy. In this sense, the DM’s decisions are exploration-free. This restriction may be

for legal or ethical concerns, as in the medical and judiciary sectors (Bastani, Bayati and Khosravi

2021).

In addition to these limitations, we consider certain features of the machine’s and DM’s pre-

dictions. Specifically, the DM is able to decide solely based on either her own judgment or the

machine’s prescription. In this sense, the DM has adequate expertise and the machine is sufficiently

accurate to make a prediction for the task, i.e., both the machine and the DM generate informative

signals. Further, the machine and the DM are substitutes in that the DM’s accuracy is either better

or worse than the machine’s.

Our framework can account for situations where the machine and DM may complement one

another, as discussed in Section 8. Nonetheless, we focus in this paper on substitution for two

reasons. First, our goal is to propose alternative explanations for overriding machines to algo-

rithm aversion, the studies of which assume substitution (Dietvorst et al. 2015). Second, and more

importantly, we seek to determine if a complementarity between the DM and the machine might

emerge from the DM’s inability to learn the nature of the machine. Assuming substitution enables

us to disentangle this learning effect from an intrinsic complementarity between the DM and the

machine.

In this set-up, we study the evolution of the DM’s belief and overruling decisions over time. This

enables identification of the situations in which the DM properly learns whether the machine makes

better predictions than her. The asymptotic behavior of the DM’s belief further characterizes the

different ways in which the DM fails to learn the true nature of the machine. Note that studying

the asymptotic behavior of believes as we do differs from most research problems found in the

operations literature on learning (see Section 2). These studies typically consider learning problems

with exploration, which eliminates the issue of the belief’s asymptotic behavior since the DM

always properly learns in the limit. The question becomes then how fast and efficient this learning

can be. In contrast, our setting is exploration free, which mutes the problem of efficient learning,

but raises the question of whether the DM properly learns in the limit.

To study the DM’s learning behavior over time, we first control for the role that overriding

decisions has in the DM’s ability to learn. To that end, we analyze a benchmark (Section 4) in

which the DM never overrides the machine and always follows its prescription. The DM, however,

observes the machine and forms a belief about its true nature. In this set-up, we find that the DM’s

ability to learn depends on the DM’s prior about the task. This prior corresponds to the probability

that an action is required for the task at hand, before the machine produces a prescription or the

DM forms a judgment on the task.
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In this benchmark, the DM properly learns that the machine is better (resp. worse), if the prior

about the task is above (resp. below) a certain threshold. In other words, the DM can end up

believing that the machine makes worse predictions than her, even though the machine is actually

better. This happens when the action is not too frequently required for the tasks. Conversely, the

DM learns that the machine is better even though it is actually worse when the action is frequently

required.

The key driver for these learning failures stems from the verification bias. Without overriding,

this feature implies that the DM learns about the machine only when it prescribes to act. With

overriding, however, the DM sometimes learns about the machine when it prescribes not to act.

This happens each time the DM decides to act against the machine’s prescription. Hence, overriding

promotes learning and may thus offset the learning failures we observe in the benchmark.

To explore this further, we turn to our main set-up where the DM can overrule the machine. This

occurs when the DM’s judgment contradicts the machine’s prescription and the DM sufficiently

believes that the machine is worse. In this setting, we find that the prior about the task plays the

same role as in the benchmark and fully determines when the DM properly learns. When the DM

fails to learn, however, the overriding decisions actually change the nature of mislearning compared

to that in the benchmark.

Specifically, when the machine is actually better than the DM and the prior about the task is

low, the DM’s belief always oscillates over time. In other words, the DM permanently remains

unsure about whether the machine is better or not, and constantly alternates between following and

overriding the machine’s prescriptions. Further, and perhaps more interestingly, the DM sometimes

treats the machine as if its prediction complements her own judgment, while in fact, the two are

full substitutes.

In addition, when the machine is worse and the DM’s prior about the task is high, the DM’s

belief actually converges to a Bernoulli random variable: the DM properly learns that the machine

is worse with a given probability but wrongly learns that it is better with the remaining probability.

In other words, the DM sometimes ends up believing that the machine is better when it is actually

worse.

Taken together, these results uncover several limitations in a decision-maker’s ability to learn

whether a machine should be overruled. They further provide a novel rationale—the uncertainty

about the machine’s true performance—for why human experts may co-produce their decisions with

a machine. Our findings also enable experts to anticipate how their beliefs about the machine may

evolve over time. This, in turn, provides guidelines for inferring whether a machine makes better

or worse predictions than experts, once it is deployed (see Section 6). Importantly, the mislearning

behaviors we characterize do not stem from an intrinsic algorithm aversion but rather from the
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problem’s structure, which we capture with four fundamentals: verification bias, exploration-free

decisions, informativeness and substitution.

Nonetheless, a DM who faces this problem’s structure may also be subject to mistrust biases

against the machine, which can interact with our findings. Indeed, mistrusting the machine affects

the DM’s ability to learn in at least two ways. First, the DM may downplay the machine’s pre-

scription when deciding to act (consistently with the decision-making literature, see, e.g., Soll and

Mannes 2011), which alters the DM’s ability to observe the correctness of the machine’s predic-

tions. Second, and in line with the algorithm aversion reported by Dietvorst et al. (2015), the DM’s

belief in the machine may disproportionately drop upon observing a machine’s prediction error.

We explore how these effects interact with our results (see Section 7) by altering our main set-up

to account for biases in the decision to act (using the opinion aggregation procedure proposed by

Stone 1961) and in the Bayesian updating process (by introducing a negativity bias - see Baumeister

et al. 2001). We find that downplaying the machine’s prescription when deciding to act does not

affect the structure of our results. However, our results change when the DM disproportionately

drops her belief upon observing a machine’s failure. In particular, the DM does not always properly

learn that the machine is better when the posterior about the task is sufficiently high, as in the

main set-up. Instead, the DM’s belief can converge to a Bernoulli random variable, a phenomena

that occurs only if the machine is actually worse in the absence of mistrust bias. In this sense,

algorithm aversion sometimes interacts with our four fundamentals (verification bias in particular)

to randomize the DM’s ability to learn.

After reviewing the literature in Section 2, we present the model in Section 3. In Section 4, we

analyze the no-overriding benchmark and then focus on the main set-up in Section 5. We highlight

the implications of our findings in Section 6 and study the effects of mistrust biases on our findings

in Section 7. Finally, we discuss future research directions in the conclusion.

2. Literature Review

Our study is related to the recent and growing literature on the interaction between human decision-

makers and data-driven algorithms. This research explores the extent to which co-production of

decisions by a machine and a DM may improve performance. For instance, Boyaci et al. (2020)

demonstrate in a rational inattention framework that human-machine interaction improves the

overall accuracy of decisions, but sometimes at the cost of higher cognitive effort (see Boyaci et al.

2020 for additional references on formal models of machine-human interactions). Machine learning

algorithms have also been proposed to provide interpretable cues to help decision makers improve

their decisions (see Bastani, Bastani and Sinchaisri 2021, for instance). This stream of research
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further explores how to use human judgment to train or improve an algorithm (Van Donselaar

et al. 2010, Ibrahim et al. 2021, Cowgill 2019).

We contribute to this literature by providing a novel rationale for why a DM may treat the

machine’s prescriptions as a complement to her judgment In fact, this stream of research typically

assumes that the machine’s accuracy is known and complements the DM’s judgement. In contrast,

the DM and the machine are substitutes and the machine’s accuracy is unknown in our setting.

In this sense, our study is closely related to the literature on overriding decisions and, more

generally, trust in algorithmic prescriptions. In particular, Lebovitz et al. (2021) document over

several months, how a team of radiologists lost trust in the quality of a machine learning algorithm

that helped analyze medical images. Dietvorst et al. (2015) also found in an experimental set-up

that their participants overrode a machine’s prescriptions, even after seeing that the machine’s

algorithm performed better than the human did on average. This tendency to wrongly override

machine-based prescriptions is further supported by empirical evidence in the field. For instance,

Sun et al. (2021) observed that packing workers at the warehouses of the Alibaba Group regularly

deviated from algorithmic prescriptions, which reduced operational efficiency. Several approaches

have been explored to reduce deviations such as these, either with field experiments (Sun et al.

2021) or in the lab (Dietvorst et al. 2018).

In contrast to this stream of papers, our study proposes an alternative explanation for inap-

propriately overriding decisions such as these, which mostly stems from the context in which the

decisions are made. Specifically, we trace these errors to four fundamentals (exploration-free, verifi-

cation bias, informativeness and substitution), which capture some essential features of high-stakes

decision making using machine-based predictions.

Recent studies also suggest that humans follow the principles of Bayesian inference when observ-

ing the correctness of machine-based decisions. For instance, Wang et al. (2018) and Guo et al.

(2020) analyze in an experimental set-up how observers dynamically update their trust in the

machine as they observe the failures and successes of its predictions (without overriding the

machine, as in the benchmark of Section 4). These studies find that assuming Bayesian observers

can explain the empirical level of human trust in the machine over time. The key difference with

our set-up, however, is that the DM is not subject to verification bias and thus always observes

the correctness of the machine’s prediction in their settings.

This verification bias is a form of selection bias, which was first introduced by Ransohoff and

Feinstein (1978) in the context of diagnostic test accuracy. This notion has been extensively studied,

especially in the biostatistics and medical literature. Most of this research focuses on developing

estimators based on the maximum likelihood to correct bias. In contrast, our study concerns asymp-

totic behavior in a Bayesian framework. More importantly, the assumptions required to correct for
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this bias do not hold in our set-up. For instance, our main set-up with overriding does not satisfy

the missing-at-random assumption used by Begg and Greenes (1983) or the restrictions imposed

on the data generating process proposed by Zhou (1993). In addition, our benchmark model cor-

responds to so-called extreme verification bias (Pepe 2003, p. 180), for which the estimation of

accuracy parameters is impossible (Broemeling 2011).

Finally, our work is related to the vast literature on learning problems, which have been exten-

sively studied in management science and operations management. For instance, studies have

considered price experimentation to learn demand curves by focusing on the tradeoffs between

learning and earning, and design heuristic policies achieving good regret performance (Besbes and

Zeevi 2009, Boyacı and Özer 2010, Cheung et al. 2017, Keskin and Birge 2019). In this stream of

papers, the DM experiments (explores) with different prices in the beginning of the time horizon

to earn (exploit) more in the remaining periods. Because of this ability to explore, the DM can,

in principle, properly uncover the true demand curve in the limit. The objective of these papers is

then to learn sufficiently fast so as to maximize profit. In contrast, we consider situations where

exploring is not possible. Thus, the DM optimizes within each period and mislearning may emerge

in our set-up.

In this sense, our approach resembles Harrison et al. (2012) which analyzes myopic pricing

policies (see Section 4 in particular). In their set-up, demand functions are the focus of learning,

whereas we consider unknown accuracy parameters. Therefore, the type of incomplete learning

that may occur differs radically in each setting. In particular, incomplete learning takes the form of

confounding beliefs in Harrison et al. (2012), such that the myopic policy charges an uninformative

price, which prevents Bayesian updating from producing a different posterior. As a result, the DM

becomes stuck in the same belief over time. In contrast, mislearning can take the form of belief

oscillation in our set-up, which cannot occur in Harrison et al. (2012) per Proposition 2.

Learning problems such as these are also extensively studied in economics (see for instance

Smith and Sørensen 2000, Acemoglu et al. 2011, and references therein), with a particular focus

on equilibrium learning dynamics shaped by multiple strategic agents. In this stream of research,

Herrera and Hörner (2013) analyzes a set-up with short-lived myopic investors, in which only

investing decisions are observable. Although this may resemble our set-up, their payoff, signal and

learning structures differ, which yields a different type of mislearning. In particular, the belief

converges to an interior point in their set-up (see Propositions 1 and 4 in Herrera and Hörner

2013), while it may not converge in ours.

3. Model Description

We consider a decision maker (DM) who faces a series of independent decision tasks over a discrete

time infinite horizon. A machine further assists the DM by producing a recommendation about
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which decision to take for each task. The DM, however, does not know if the machine’s accuracy is

superior to her own judgment. As the accuracy of the machine’s predictions is revealed over time,

the DM forms a belief about whether or not she should override the machine’s prediction. Next, we

introduce the single decision task problem that the DM performs in each period. We then consider

the whole time horizon.

3.1. Single Decision Task

A task consists in deciding whether or not a specific action (e.g., a biopsy) is required. We denote

as Θ ∈ {A,NA} the type of task such that the action is required if Θ = A and is not required if

Θ=NA. The DM does not know the task’s type but has a prior belief p≜ P(Θ=A) that she should

act.

To perform this task, the DM applies her expertise and elicits imperfect signal SH ∈ {+,−}, such
that SH =+ (resp., SH =−) indicates that Θ=A (resp., Θ=NA). We denote the sensitivity (true

positive rate) and specificity (true negative rate) of the signal by αH and βH, respectively. The

DM is further assisted by a machine learning algorithm, which makes an independent prediction

about type Θ. This prediction corresponds to a second signal, SM ∈ {+,−}, with sensitivity and

specificity equal to (αM, βM).

Importantly, the DM is uncertain about whether the machine’s accuracy is better than her own.

Specifically, we denote the machine’s type as Γ ∈ {B,W}. When Γ = B (resp., Γ =W), signal SM

is better (resp., worse) than signal SH, and the sensitivity and specificity of the signal are equal

to (αB, βB) (resp., (αW, βW)). The machine is better (resp., worse) in the sense that the DM never

(resp., always) overrules the machine when its type is perfectly known. This corresponds to the

notion of substitution, which we introduce and formalize later in this section (see equations 4 and

5). To exclude degenerated cases, we further focus our analysis on situations where αB > αW and

βB >βW.1 This is only for the sake of clarity, as all of our results extend to the more general case.

Probability b≜ P
(
Γ= B

)
denotes then the DM’s prior belief that the machine outperforms her

ability to decide. In effect, these two types of machine induce two different probability measures

PB{·} and PW{·} on the sample space of the machine’s signals, such that PΓ(SM =+,Θ=A) = αΓp

and PΓ(SM =−,Θ=NA) = βΓp̄ for Γ∈ {B,W} (with x̄= 1−x for x∈ [0,1]).

Based on realizations sH and sM of signals SH and SM, respectively, and her belief b about the

machine, the DM updates her prior p that an action is required using Bayes’ rule. The corresponding

posterior probability is thus P(Θ=A |SH = sH, SM = sM, b) (with a slight abuse of notation).2

1 This assumption guarantees that the DM’s belief in a better machine decreases (resp., increases) upon observing an
incorrect (resp., correct) machine prediction. In contrast, assuming αW >αB (resp., βW > βB) implies that the DM’s
belief that the machine is better actually increases after observing a false negative (resp., false positive) error.

2 In particular, we have P(Θ = A |SH = sH, SM = sM,1) = PB(Θ = A |SH = sH, SM = sM) and P(Θ = A |SH = sH, SM =
sM,0) = PW(Θ=A |SH = sH, SM = sM).
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The DM then decides to act if and only if her posterior belief is above a positive threshold r, i.e.,

P(Θ=A |SH = sH, SM = sM, b)≥ r; the DM does not act otherwise. This decision rule is optimal, for

instance, when the DM seeks to maximize the expected value associated with correctly identifying

the task’s type. In this case, threshold r accounts for the false positive and false negative costs

associated with the decision.3

Informativeness: In the following, we assume that the signals produced by both the DM and

the machine are informative, in the sense that each signal provides sufficient information for the

DM to decide. Formally, this corresponds to:

P(Θ=A |SH =+)≥ r and P(Θ=A |SH =−)< r , (1)

PB(Θ=A |SM =+)≥ r and PB(Θ=A |SM =−)< r, (2)

PW(Θ=A |SM =+)≥ r and PW(Θ=A |SM =−)< r. (3)

In other words, the sole realization of either SH or SM, whether the machine is of type B or W,

fully determines whether or not the posterior belief is larger than threshold r, i.e., the DM takes

the action. These conditions further imply that considering both signals SH and SM together is

redundant when their realizations are aligned, i.e., when sH = sM. One signal is then sufficient for the

DM to decide since the DM acts if SH = SM =+ and does not act if SH = SM =−. If the realizations

are misaligned with sH ̸= sM, however, the DM and the machine may override one another. In this

case, we consider situations where the machine and the DM are full substitutes in the following

sense.

Substitution: We assume that a type B machine always overrides the DM’s judgment, while

the DM always overrides the prescription of a type W machine. Formally, this corresponds to:

PB(Θ=A |SH =+, SM =−)< r and PB(Θ=A |SH =−, SM =+)≥ r (4)

PW(Θ=A |SH =+, SM =−)≥ r and PW(Θ=A |SH =−, SM =+)< r (5)

Thus, if the signals of the DM and a type B machine contradict one another, signal SM alone

determines whether or not the posterior probability is larger than the threshold (per equation (4)).

Along with the Informativeness property, this means that a type B machine always determines

whether the DM should act, independently of the DM’s judgment. In contrast, the DM decides alone

and can ignore the prescription of a type W machine (per equation (5)). Hence, if the machine’s

type is fully known, the DM and the machine never collaborate to make a decision. In this sense,

the DM and the machine are substitutes for the task.

3 See, Alizamir et al. (2013) for instance, for a micro foundation of threshold r.
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In essence, Informativeness and Substitution are conditions on the DM’s posterior probability

about the task’s type, which in turn depends on the signals’ sensitivities and specificities, as well

as prior p and threshold r.

3.2. Repeated Tasks and Learning

We now consider the situation where the DM faces a series of decision tasks over a discrete time

infinite horizon. Task types Θt, t∈N, are independent and identically distributed with probability

p. (In the following, we use subscript t to denote the parameters associated with the task of period

t.) At the beginning of period t > 0, the DM’s belief about the the machine’s type is given by bt−1,

where b0 is the prior belief at the beginning of the time horizon. The DM then obtains signals

SH
t , S

M
t and decides whether to act.

Exploration-Free: In making this choice, the DM considers only the task at hand. More

formally, the DM acts if P(Θt =A |SH
t , S

M
t , bt−1)≥ r and does nothing otherwise. In particular, the

DM does not act for the sole purpose of uncovering the true task’s type and thus learning the

machine’s. Instead, the DM decides what she thinks is best for the current task and is thus myopic

with respect to learning the machine’s type.

At the end of the period, the DM updates her belief bt−1 to posterior bt according to Bayes’ rule,

if the DM observes type Θt.

Verification Bias: The DM, however, observes the task’s type and updates her belief accord-

ingly if and only if an action is taken. Because decisions are exploration-free, the verification bias

implies that the DM updates her belief if and only if P(Θt =A |SH
t , S

M
t , bt−1)≥ r, in which case we

assume that the DM follows Bayes’ rule. Thus, we have,

bt =


bt−1 if P(Θt =A |SH

t = sH, SM
t = sM, bt−1)< r[

1+
b̄t−1

bt−1

PW(SM
t = sM |Θt = θ)

PB(SM
t = sM |Θt = θ)

]−1

if P(Θt =A |SH
t = sH, SM

t = sM, bt−1)≥ r ,
(6)

where θ ∈ {A,NA} is the observed value of Θt.

Equation (6) highlights two mechanisms by which the DM’s belief about the machine’s type is

endogenously determined over time. The first corresponds to the Bayesian updating of prior bt−1

when the DM observes type Θt. The second corresponds to the DM’s ability to observe type Θt in

the first place, that is, whether posterior belief P(Θt = A |SH
t , S

M
t , bt−1) is sufficiently large. This,

in turn, depends on belief bt−1. Equation (6) further implies that when the DM acts, she increases

(resp., decreases) her belief that the machine is better if the machine’s prescription turns out to

be correct (resp., wrong).
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Overall, this set-up describes a process through which the DM focuses her attention on making

a series of diagnostic decisions (e.g., whether to run different biopsies) based on her expertise and

the machine, until the observation of the correctness of the machine’s prediction prompts her to

revise her belief about the machine.

When this happens, the DM updates belief bt in part based on signal SM
t . The machine’s type,

however, determines the probability distribution, PB{·} or PW{·}, of this signal. Hence, belief (bt)t∈N

can follow two different stochastic processes depending on machine type Γ. The asymptotic behavior

of belief bt thus captures the DM’s ability to learn whether the machine makes better predictions.

Indeed, the DM properly learns the machine’s type if her belief converges over time to 1 (bt
a.s.−−→ 1)

when the machine is better (Γ=B) and converges to 0 (bt
a.s.−−→ 0) when the machine is worse (Γ=W).

(Notation
a.s.−−→ indicates almost-sure convergence.) In contrast, the DM mislearns the machine’s

type when bt
a.s.−−→ 0 (resp., 1) and Γ = B (resp., Γ =W). Learning may even be inconclusive when

belief bt converges to an interior point in (0,1) or oscillates. More formally, a stochastic process

Yt is said to be oscillating and recurrent if recurrent interval I exists such that for any τ > 0,

P(Yt ∈ I for some t > τ |Yτ ∈ I) = 1 (see Definition 8.1 in Gut 2009 for instance).

Our objective, therefore, is to study the asymptotic behavior of bt and characterize the resulting

learning behavior of the DM.

4. No-Overriding Benchmark

We first study the setting where the DM never overrides the machine’s prediction but continues

to form a belief about the type of the machine. Studying this benchmark enables us to identify in

the next section, the effect of the DM’s own decisions on her ability to learn the machine’s type.

Without overriding, prior bt−1 does not determine whether an action is taken and, thus, whether

the task’s type is observed ex post. Hence, the second mechanism by which prior bt−1 influences

posterior bt is mute in this benchmark. Learning occurs through only the first mechanism, i.e., the

application of Bayes’ rule when the machine prescribes to act.

More specifically, the DM acts if and only if SM
t = + regardless of her own judgment SH

t . The

condition for the DM to act, P(Θt = A |SH
t , S

M
t , bt−1)≥ r, thus reduces to P(Θt = A |SM

t , bt−1)≥ r,

which is equivalent to SM
t = + for any bt−1 due to Informativeness (2)-(3). Equation (6) then

becomes

bt =


bt−1 if SM

t =−[
1+

b̄t−1

bt−1

PW(SM
t =+ |Θt = θ)

PB(SM
t =+ |Θt = θ)

]−1

if SM
t =+.

(7)

To study the asymptotic behavior of bt, we consider instead the log-likelihood ratio Lt of the

probability that Γ = B in period t. Formally, Lt is a monotone continuous transformation of bt

given by Lt ≜ log
(

bt
1−bt

)
, such that

Lt =Lt−1 +RM
t ,
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where (RM
t )t∈N are i.i.d. random jumps. In particular, the log-likelihood ratio is increasing in the

DM’s belief, and the asymptotic behavior of Lt fully determines the asymptotic behavior of bt.

Indeed, we have bt
a.s.−−→ 1 (and bt

a.s.−−→ 0) if and only if Lt
a.s.−−→+∞ (and resp. Lt

a.s.−−→−∞) per the

continuous mapping theorem.

Log-likelihood ratio Lt is a random walk governed by jumps (RM
t )t∈N, which capture the mag-

nitude and direction of the belief’s updates. These random jumps take three possible values: a

positive (resp., negative) value when the DM observes that the machine correctly (resp., wrongly)

prescribes to act, i.e., SM
t = + and Θt = A (resp., Θt = NA), or zero when the task’s type is not

observed, i.e., SM
t =−. The asymptotic behavior of Lt is then fully determined by the sign of the

mean EΓ[RM
t ]. If EΓ[RM

t ]> 0 (resp., < 0), then log-likelihood ratio Lt increases in expectation and

converges almost surely to +∞ (resp., −∞),4 while Lt does not converge when EΓ[RM
t ] = 0. Based

on these properties, we characterize next the DM’s ability to learn the machine’s type when the

DM does not override its prescriptions.

Theorem 1 (Learning without Overriding). Unique thresholds pB and pW exist such that pB <

pW and,

• when the machine is better (Γ = B), bt
a.s.−−→ 0 if p < pB, bt

a.s.−−→ 1 if p > pB; and bt is recurrent

and oscillates if p= pB,

• when the machine is worse (Γ=W), bt
a.s.−−→ 0 if p < pW, bt

a.s.−−→ 1 if p > pW; and bt is recurrent

and oscillates if p= pW.

Further, we have

pB ≜
β̄B log

(
β̄W

β̄B

)
β̄B log

(
β̄W

β̄B

)
+αB log

(
αB

αW

) and pW ≜
β̄W log

(
β̄W

β̄B

)
β̄W log

(
β̄W

β̄B

)
+αW log

(
αB

αW

) .
To prove this result, we first establish that EΓ[RM

t ] > 0 (resp. < 0) if p > pΓ (resp. < pΓ) for

Γ ∈ {B,W}, and then apply the continuous mapping theorem. (All proofs are in the appendix.)

Figures 1 and 2 depict how the DM’s belief evolves for a given machine’s type. The figures (as

all figures do in this paper) illustrate the limiting behavior of the DM’s belief by plotting sample

paths over time.

In essence, Theorem 1 states that the DM’s ability to learn depends on her prior about the task

as well as the machine’s type. The DM learns that the machine is worse (resp., better) when her

prior is below (resp., above) pΓ for type Γ ∈ {B,W}. Importantly, this means that the DM may

not properly learn whether the machine is better than her. Indeed, when prior p is low (p < pB),

the DM learns that the machine is worse (bt
a.s.−−→ 0, see Figure 1a), while the machine is actually

4 The divergence of Lt is due to the strong law large numbers; see Gut (Theorem 8.3 in p. 68 2009) for more details.
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Figure 1 The DM’s belief bt at the no-overriding benchmark when the machine is better, Γ=B
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(a) p < pB
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(b) p > pB

Note. αH = βH = 0.95, αB = βB = 0.99, αW = βW = 0.85, pB = 0.15 and r= 0.07, (a) p= 0.05, (b) p= 0.2.

Figure 2 The DM’s belief bt at the no-overriding benchmark when the machine is worse, Γ=W
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(a) p < pW
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(b) p > pW

Note. αH = βH = 0.95, αB = βB = 0.99, αW = βW = 0.9, pW = 0.72 and r= 0.8, (a) p= 0.71, (b) p= 0.75.

better (Γ =B). Similarly, when prior p is high (p > pW), the DM learns that the machine is better

(bt
a.s.−−→ 1, see Figure 2b), while the machine is actually worse (Γ=W).

Theorem 1 stems from the fact that, in this benchmark, the DM acts only if the machine’s

signal is positive. To see this, recall first that the DM’s belief increases (resp., decreases) when

the DM observes a correct (resp., incorrect) machine recommendation. Because the DM is able to

observe this only when the machine’s signal is positive, the DM increases her belief if and only if

the machine correctly prescribes to act (SM
t =+ and Θt =A) and decreases her belief if and only if

the machine wrongly prescribes to act (SM
t =+ and Θt =NA). And because the belief is unchanged
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when the machine’s signal is negative, this further means that the DM’s belief weakly increases if

the task requires an action (i.e., if Θt =A), and weakly decreases otherwise (i.e., if Θt =NA).

In other words, the frequency with which the DM increases and decreases her belief is fully

determined by priors p and p̄, respectively. In particular, the DM increases her belief more frequently

when the task is more likely to require an action (Θt = A), i.e., prior p takes higher values. The

magnitudes of these changes in beliefs, however, do not depend on prior p but are determined

by the accuracy levels of the machine. Threshold pΓ thus corresponds to the break-even value of

prior p such that the expected increase in belief compensates for the expected decrease when the

machine is of type Γ. When p > pΓ, the expected increase dominates the expected decrease and the

belief converges to one. When p < pΓ, the opposite is true, and the belief converges to zero.

5. Main Set-up: Learning with Overriding

In our main set-up, the DM can overrule the machine’s recommendations by exerting her own

judgment. Overruling the machine actually mitigates the effects of prior p that induce mislearning

in the no-overriding benchmark. Indeed, the DM can evaluate the machine’s accuracy only when

the machine prescribes to act in this benchmark. With overriding, however, the DM may decide

to act and thus observe the task’s type when the machine prescribes not to act. The key question,

therefore, is to which extent overriding enables the DM to learn the true type of the machine.

More specifically, recall that due to Informativeness, the DM always decides according to her

signal when it is consistent with the machine’s signal with SH
t = SM

t . When these signals differ with

SH
t ̸= SM

t , the DM may override the machine depending on her current belief bt−1. The following

result determines when such overriding decisions occur. (The result follows from Substitution (4)-

(5) and the continuity of the posterior probabilities in bt−1; see Appendix B.)

Lemma 1. Unique thresholds b− ∈ (0,1) and b+ ∈ (0,1) exist such that

P(Θt =A |SH
t =+, SM

t =−, bt−1)≥ r ⇔ bt−1 ≤ b− , (8)

P(Θt =A |SH
t =−, SM

t =+, bt−1)≤ r ⇔ bt−1 ≤ b+ . (9)

Lemma 1 states that when the DM’s judgment contradicts the machine’s prescription, i.e., SH
t ̸=

SM
t , the DM overrides the machine if and only if her belief in a better machine is sufficiently low,

i.e., below a threshold. However, the DM can override the machine in two different ways, depending

on whether the machine prescribes to act or not. This yields two different thresholds b− and b+,

which correspond to an overriding decision for a negative and positive machine signal, respectively.

These thresholds actually correspond to the value of belief b that makes the DM indifferent

between acting and not acting when SH
t = −, SM

t = + and SH
t = +, SM

t = −, respectively. Note
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also that the ranking between b− and b+ depends on the problem’s parameters, and we define

the minimum and maximum of these two thresholds as bH ≜ min(b−, b+) and bM ≜ max(b−, b+),

respectively (where bH and bM can be equal).

Thus, when belief bt−1 is sufficiently large with bt−1 > bM, the DM has sufficient confidence in

the machine to always follows its prescriptions; this corresponds to the no-overriding benchmark.

However, when the belief is sufficiently low with bt−1 < bH, the DM always overrides the machine

and decides solely based on her judgment; this is consistent with Substitution, which stipulates

that the machine is either better or worse than the DM.

Interestingly, Lemma 1 further reveals that the DM may treat the machine’s prescription as

complementing—instead of substituting—her expertise. This occurs when the DM is sufficiently

unsure about the machine’s type with bt−1 ∈ (bH, bM). In this case, the DM and the machine comple-

ment one another in two possible ways, depending on whether threshold b− is larger or smaller than

threshold b+. If b+ < b−: the DM overrules the machine when its signal is negative but follows the

machine’s prescription when it is positive. In other words, the DM assumes that she makes better

positive but worse negative decisions than the machine. In this sense, the DM and the machine

collaborate on the task. As a result, the DM acts if and only if either the DM or the machine find

evidence to do so (SH
t =+ or SM

t =+). If b− < b+, however, the DM overrules a positive machine’s

signal but follows a negative machine’s signal and thus acts if and only if the DM and the machine

agree that an action is required (SH
t =+ and SM

t =+).

Overall, Lemma 1 indicates that the DM’s ability to learn the true type of task depends on

her current belief about the machine. This means, in particular, that the random jumps of the

corresponding log-likelihood ratio also depend on the current ratio. Formally, we have

Lt =Lt−1 +RHM
t (Lt−1)

when the DM can override the machine. In contrast to the no-overriding benchmark, the random

jumps RHM
t are no longer i.i.d., as their distributions now depend on the magnitude of Lt−1. Thus,

the sign of the expected jump, which determines the asymptotic behavior of belief bt, is path-

dependent. Next, we explore how this dependency affects the ability of the DM to learn the true

machine type.

5.1. Learning When the Machine is Better

We first study the DM’s ability to properly learn the machine’s type when the machine is in fact

better. Our next result characterizes the situations in which mislearning occurs in this case.

Theorem 2 (Learning with Overriding). When the machine is better, i.e. Γ = B, if p ≤ pB,

then bt oscillates and is recurrent; otherwise bt
a.s.−−→ 1.
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Thus, with overriding, the DM’s ability to learn the machine’s type continues to depend on

whether her prior about the task is sufficiently high. In fact, the threshold characterizing when

proper learning occurs is the exact same as the one without overriding (defined in Theorem 1).

Specifically, the DM learns that the machine is indeed better (bt
a.s.−−→ 1) if and only if prior p is

sufficiently high with p > pB. Figure 3b illustrates this case and exhibits asymptotic behavior similar

to that in Figure 1b for the no-overriding benchmark.

The DM’s ability to override the machine, however, fundamentally changes the nature of mis-

learning. Indeed, when prior p is such that p≤ pB, the DM wrongly learns that the machine is worse

in the no-overriding benchmark. With overriding, however, the belief oscillates as illustrated in

Figure 3a. And because the belief is also recurrent, the DM constantly switches among overruling

the machine (bt < bH), collaborating with it (bt ∈ (bH, bM)) or letting the machine decide (bt > bM),

as stated by the following corollary.

Corollary 1. When the machine is better, i.e., Γ = B and p≤ pB, intervals (0, bH], (bH, bM) and

[bM,1) are recurrent for belief bt.

Hence, when the DM sufficiently believes that the machine is better, she never overrules it and

we retrieve the dynamics of the no-overriding benchmark. That is, when bt > bM, learning is entirely

driven by whether or not a machine’s prescription to act is correct. And because prior p is low, the

frequency of these correct predictions is also low, so the belief is decreasing in expectation.

In contrast, when the DM sufficiently believes that the machine is worse with bt < bH, she always

overrides the machine. In this case, the DM sometimes observes the machine’s accuracy even when

it prescribes not to act. This occurs when the DM’s signal is positive and overrules a machine’s

negative signal. In this case, learning is driven by the true machine’s type, and because the machine

is actually better, the belief increases in expectation.

Therefore, belief bt is pushed back downward when it reaches high values (bt > bM), and pushed

upward when it takes low values (bt < bH). Hence, the DM never fully learns that the machine is

better, but due to overriding, never mislearns that it is worse either. In this sense, the DM always

remains in perpetual uncertainty about whether or not to disregard the machine.

Interestingly, this long-run uncertainty induces the DM to sometimes treat the machine’s pre-

scription as a complement to her judgment. This happens when the belief reaches bt ∈ (bH, bM),

which is a recurrent event. In this case, the DM and the machine co-produce the decision per

Lemma 1 (and the explanations that follow). Because the machine and DM are actually substi-

tutes, the emergence of this complementarity is driven only by the DM’s inability to learn the true

machine type.
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Figure 3 The DM’s belief bt when the machine is better, Γ=B
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Note. αH = βH = 0.95, αB = βB = 0.99, αW = βW = 0.85, pB = 0.15 and r= 0.07, (a) p= 0.05, bH = 0.57, bM = 0.81, (b)

p= 0.2, bH = 0.01, bM = 0.96.

5.2. Learning When the Machine is Worse

Per Theorems 1 and 2, the DM properly learns that the machine is good when prior p takes high

values (i.e., p > pB), whether the DM can override the machine or not. In this case, overriding

essentially prevents the DM from wrongly learning that the machine is worse, which creates a

perpetual state of uncertainty. In contrast, when the machine is indeed worse and the DM can

overrule it, the DM may learn its true type for any prior p. This, however, occurs only randomly

when prior p takes low values, as stated by the following result.

Theorem 3 (Learning with Overriding). When the machine is worse, i.e., Γ=W, if p≤ pW,

then bt
a.s.−−→ 0; otherwise, bt

a.s.−−→X where X is a Bernoulli random variable.

Theorem 3 indicates that the DM’s ability to learn hinges again on prior p. As in the no-overriding

benchmark, the DM can properly learn that the machine is worse (b
a.s.−−→ 0) if prior p takes low

values (p < pW, where threshold pW is, again, the same as that in the no-overriding benchmark).

Figure 4a illustrates this point, and depicts a sample path of bt, which is similar to the one in

Figure 2a for the no-overriding benchmark.

When the prior is high (p > pW), however, the belief converges to a Bernoulli random variable.

That is, the sample paths of belief bt converge to zero with a certain probability and to one with

the complement probability. In particular, the belief never oscillates nor converges to an interior

point in the limit. Thus, the DM’s ability to properly learn the machine’s type is random in this

case. In particular, the DM may sometimes wrongly learn that the machine is better, while it is

actually worse. Figure 4b illustrates this point and depicts examples of the two possible sample

paths for bt, one (dashed line) converging to one and the other (solid line) to zero.
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Figure 4 The DM’s belief bt when the machine is worse, Γ=W
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Note. αH = βH = 0.95, αB = βB = 0.99, αW = βW = 0.9, pW = 0.72 and r = 0.8, (a) p= 0.71, bH = 0.23, bM = 0.76, (b)

p= 0.75, bH = 0.38, bM = 0.68.

Similar to the better machine case, learning is driven by prior p as in the no-overriding benchmark

when the belief is high (bt > bM), and by the true type of the machine when the belief is low (bt < bH).

In the latter case, the belief decreases in expectation since the machine is worse.

Thus, for low prior p < pW, the belief moves downward in expectation when it takes sufficiently

high or low values and hence converges to zero in the long run. The DM then properly learns that

the machine is worse.

For high prior p > pW, however, the belief increases in expectation when the belief is already high

and decreases when it is already low. In the long-run, the belief is thus pushed close to either one

or zero. Whether the belief reaches high or low values is determined by realizations of the different

signals and the task types and is thus random. Note that when the belief takes intermediary

values (bt ∈ (bH, bM)) it can either decrease or increase in expectation depending on the problem

parameters. However this region is transient since the belief is pushed away from the region when

the belief is more extreme (bt /∈ (bH, bM)).

6. Implications

6.1. Learning and Mislearning

Taken together, these results provide theoretical limits on our ability to learn whether a machine

makes better decisions than an expert. Interestingly, this inability to learn sometimes induces the

DM to treat the machine’s prescription as a complement to her own judgment, even though the

two are actually substitutes. For instance, the DM may believe that her predictions have better

sensitivity but worse specificity than those of the machine, while in fact, the machine is better in
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terms of both accuracy metrics. In this sense, the DM’s uncertainty about the machine provides a

novel rationale for why experts and machines may collaborate in practice.

Our results further identify the uncertainty surrounding the decision task as the key factor for

mislearning. In fact, the DM fails to learn when she is most certain a priori about whether an action

is required for a task (i.e., when prior p takes more extreme values with p < pB or p > pW). Conversely,

the DM always properly learns the machine’s type when she is most uncertain about whether or

not act (i.e., prior p takes moderate values), as stated by the next corollary of Theorems 1, 2 and 3.

Corollary 2. The DM always correctly learns the true type of the machine if and only if p ∈
(pB, pW), whether the DM can override the machine or not.

6.2. Learning with Anticipation

In our set-up, as in the literature, the DM updates her belief using the past history of the observed

accuracy of the machine’s predictions. Nonetheless, our results characterize the asymptotic behavior

of this learning process and, as such, provide guidelines for DMs who anticipate the future behavior

of their own belief. In particular, the nature of a learning failure is indicative of the machine’s type

in our results. The DM may thus leverage this information to determine whether the machine is

better.

Indeed, the DM’s belief may oscillate only when the machine is better (see Figure 3a), and

always converges when it is worse (see Figure 4). Thus, the longer the DM remains uncertain (in

the sense of Theorem 2), the more likely the machine is actually better. Similarly, the DM’s belief

can converge to zero only if the machine is worse. Indeed, the belief either oscillates or converges

to one when the machine is better. Hence, the longer the DM believes that the machine is worse,

the more likely she is correct in her assessment.

Assessing if the DM is correct when she increasingly believes that the machine is better appears

to be more challenging. Indeed, the DM’s belief can converge to one whether the machine is better

(see Figure 3b) or worse (see Figure 4b). To circumvent this issue, one approach consists in relying

on more than one decision maker. To see how, consider several identical decision makers who

independently handle a series of tasks that are randomly drawn from the same sample and use

the same machine. If this machine is better, all DMs should have the same limiting behavior: they

either all remain uncertain or all learn that the machine is indeed better (per Theorem 2). However

if the machine is worse, the convergence to either zero or one is random (per Theorem 3). Thus, if

a single DM in the team believes over time that the machine is worse, then the machine is indeed

likely to be worse—even if the rest of the team believes it to be better. In contrast, if there is

consensus in the team that the machine is better, then the larger the team is, the more likely it is

that the machine is better.
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In short, long-term uncertainty or a unanimous belief among large teams that the machine is

better is indicative of a better machine. In contrast, persistently overruling the machine is indicative

of a worse one.

6.3. Adoption or Rejection

Our study also sheds lights on the decision to fully adopt or reject the machine. Indeed, after

observing and at times overriding the machine’s prescriptions, the DM’s belief may reach extreme

levels. In these cases, the DM decides either to let the machine make all the decisions (as in

Section 4), or to abandon the machine altogether, depending on whether the belief is sufficiently

high or low, respectively. Once a machine is abandoned, however, the DM cannot learn about it

anymore.

If the DM decides to fully adopt the machine—but continues to observe its performance—our

results indicate that the DM will become increasingly confident about her adoption decision over

time when prior p about the task is high (p > pB for a better machine, and p > pW, for a worse one

per Theorems 2-3). This occurs even when the machine is actually worse and should be abandoned.

In contrast, when the prior about the task is low (p < pB or p < pW, depending on the true

machine type), the DM increasingly doubts her adoption decision over time. This is because the

DM’s belief in a better machine decreases in expectation over time and always approaches 0 in the

limit in this case (per Theorems 2-3). This happens even when the machine is actually better and

should be adopted.

Recall, finally, that when the machine is better and the prior about the task is low, the DM’s belief

in the set-up with overriding oscillates and is recurrent in (0,1) (per Theorem 2 and Corollary 1).

Therefore, the DM’s belief eventually reaches any low level with probability one. In other words,

the DM always ends up abandoning the machine in the long run, even though the machine is

actually better.

7. Mistrust Biases against the Machine

A key feature of the mislearning behavior in Theorems 2-3 is that they do not stem form an

inherent mistrust against the machine. Instead, they stem from four fundamentals (verification

bias, exploration-free decisions, informativeness and substitution), which characterize the set-up,

in which the DM works with the machine. Nonetheless, the DM may also be subject to mistrust

biases against the machine in situations where these fundamentals are at play. In this section, we

explore to which extent biases such as these interact with our four fundamentals to affect the DM’s

learning behavior.
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In our main set-up, mistrusting the machine affects the DM’s ability to learn in at least two

ways. First, the DM may downplay the machine’s prescription when deciding to act, which alters

the DM’s ability to observe the correctness of the machine’s predictions. Second, and in line with

the algorithm aversion reported by Dietvorst et al. (2015), the DM’s belief in the machine may

disproportionately drop upon observing the failure of a machine’s prediction. In the following, we

inspect these different biases in turn.

7.1. Mistrusting the Machine When Deciding

The DM’s mistrust in the machine may affect the way she weights the machine’s prescription

when deciding to act. This is consistent with the decision-making literature, which finds that

individuals tend to discount information coming from external sources and overweight their own

opinions (see for instance, Soll and Mannes 2011). To account for this possibility, we follow Stone

(1961), who proposes a non-Bayesian approach to represent the aggregation of different opinions.

This approach is commonly used to model mistrust bias (Özer and Zheng 2018), in particular when

a human makes decisions based on the input of a data-driven algorithm (Ahsen et al. 2019, Boyaci

et al. 2020). Specifically, the DM’s updated belief that an action is required given the DM’s and

machine’s signals is a linear combination between the updated belief of the human and that of the

machine. More formally, the DM’s posterior belief about the task is defined as

P̃λ(s
H, sM, bt−1)≜ λP(Θt =A |SH = sH)+ (1−λ)P(Θt =A |SM = sM, bt−1) (10)

where λ ∈ (0,1) represents the DM’s mistrust bias against the machine’s signal. The higher the

value of λ is, the more the DM mistrusts the machine. Belief P̃λ(S
H, SM, bt−1) corresponds then

to the posterior probability P(Θ= A |SH, SM, bt−1) derived from Bayes’ rule in the main set-up. In

particular, the DM decides to act if and only if P̃λ(s
H, sM, bt−1)≥ r.

In this set-up, the DM always overrules a better machine (never overrules a worse machine) if

the bias is too high (resp., too low). In these extreme situations, the DM and the machine no longer

substitute one another. We thus restrict our analysis to moderate values of mistrust parameter λ,

as formalized by the following lemma, where P̃B
λ(s

H, sM)≜ P̃λ(s
H, sM,1) and P̃W

λ (s
H, sM)≜ P̃λ(s

H, sM,0)

represent the DM’s beliefs about the task’s type when the machine’s type is known.

Lemma 2. Two thresholds λmin and λmax exist such that if λ∈ (λmin, λmax), then

P̃B
λ(S

H
t =+, SM

t =−)< r and P̃B
λ(S

H
t =−, SM

t =+)≥ r , (11)

P̃W
λ (S

H
t =+, SM

t =−)≥ r and P̃W
λ (S

H
t =−, SM

t =+)< r . (12)
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In the following, we focus on λ ∈ (λmin, λmax) to ensure that Substitution persists in the presence

of mistrust bias. The next theorem shows that under these conditions, the structure of our main

results continue to hold.

Theorem 4. Assume λ∈ (λmin, λmax).

• When Γ=B, if p≤ pB, then bt oscillates and is recurrent; otherwise, bt
a.s.−−→ 1.

• When Γ =W, if p ≤ pW, then bt
a.s.−−→ 0; otherwise, bt

a.s.−−→X where X is a Bernoulli random

variable.

Thus, the DM’s learning behavior characterized in Theorems 2-3 does not change overall if the

DM is biased against the machine’s prescription when making a decision. Note also that Corollary 1

continues to hold in this case but with thresholds b− and b+ depending on λ (see Lemma 5 in the

appendix).

7.2. Mistrusting the Machine When Updating Belief

The DM’s mistrust against the machine can also affect the way the DM updates her belief about the

machine. Dietvorst et al. (2015), for instance, experimentally show that individuals are more likely

to ignore algorithm-based predictions after observing these algorithms err. More generally, the

observation of negative outcomes, such as a prediction failure, more strongly impact the formation

of an individual impression, than do positive ones—a phenomenon referred to as negativity bias in

the literature (Baumeister et al. 2001).

To account for this bias, we follow the literature (see for instance Coutts 2019, Möbius et al. 2022)

and allow updated belief bt to drop significantly upon observing an incorrect machine prediction.

Specifically, the DM updates her belief following Bayes’ rule when the machine is correct but

magnifies the decrease in belief when the machine is wrong. More formally, we have

bt =


bt−1 if P(Θt =A |SH

t = sH, SM
t = sM, bt−1)< r1+ b̄t−1

bt−1

[
PW(SM

t = sM |Θt = θ)

PB(SM
t = sM |Θt = θ)

]ϕ(sM, θ)
−1

if P(Θt =A |SH
t = sH, SM

t = sM, bt−1)≥ r ,

where function ϕ(sM, θ) = µ> 1 if the machine is incorrect (i.e., for sM =+ and θ=NA or sM =− and

θ = A) and ϕ(sM, θ) = 1 otherwise. Because ratio PW(SM
t |Θt)/PB(SM

t |Θt)> 1 when the machine is

incorrect, the higher the value of mistrust parameter µ is, the lower belief bt becomes. In particular,

the main set-up corresponds to µ= 1, which coincides with Bayes’ rule.

The next result characterizes the asymptotic behavior of the DM’s belief in the presence of this

negativity bias.

Theorem 5 (Learning with Negativity Bias). Unique thresholds µB, µW, µH exist such that
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• when the machine is better (Γ=B),

— if µ≥ µB and µ>µH, then bt
a.s.−−→ 0.

— if µB >µ>µH, then bt
a.s.−−→X where X is a Bernoulli random variable.

— if µH ≥ µ≥ µB, then bt is recurrent and oscillates.

— if µB >µ and µH ≥ µ, then bt
a.s.−−→ 1.

• when the machine is worse (Γ=W),

— if µ≥ µW, then bt
a.s.−−→ 0.

— if µW >µ, then bt
a.s.−−→X where X is a Bernoulli random variable.

Further, we have

µB ≜
pαB log

(
αB

αW

)
p̄β̄B log

(
β̄W

β̄B

) , µW ≜
pαW log

(
αB

αW

)
p̄β̄W log

(
β̄W

β̄B

) and µH ≜
pαHαB log

(
αB

αW

)
+ p̄β̄HβB log

(
βB

βW

)
pαHᾱB log

(
ᾱW

ᾱB

)
+ p̄β̄Hβ̄B log

(
β̄W

β̄B

) > 1 .

Note that thresholds µB and µW actually play the same role as pB and pW in Theorems 2 and 3,

respectively. Indeed, thresholds pBµ and pWµ exist such that µ > µΓ ⇔ p < pΓµ, for Γ = {B,W}. In

particular, the structure of the results when the machine is worse (see Theorem 3) does not change

in the presence of negativity bias. In this case, mistrust parameter µ affects the learning only

through the value of threshold µW and, hence, pWµ .

When the machine is better, however, the presence of mistrust changes the structure of the

results. In particular, under moderate mistrust such that µB > µ > µH, the DM learns that the

machine is better only with some probability (second point in Theorem 3). This is in contrast to the

main set-up without mistrust, in which the DM always learns that the machine is better if p > pB.

In fact, the DM’s belief can converge to a Bernoulli random variable in our main set-up only when

the machine is worse. If the mistrust in the machine is too strong with µ>max(µH, µB) (first point

of the theorem), however, the DM always wrongly learns that the machine is worse. Otherwise, the

bias does not alter the learning behavior. In fact, Theorem 5 reduces to Theorems 2-3 when µ= 1.

In this case, we have µH > µ= 1 and the belief either converges to one or oscillates depending on

whether µB ≤ µ= 1 or not, which is equivalent to pB ≥ p.

Overall, mistrust in the form of a negativity bias interacts with our fundamentals in a meaningful

way only when the level of mistrust is moderate and the machine is actually better. In this case,

whether the DM learns the true nature of the machine becomes random—while the DM always

properly learns that the machine is better when she is not biased against the machine.

8. Conclusion

This paper proposes a framework in which a machine performs repeated decision tasks under the

supervision of a DM. In this set-up, we fully characterize the evolution of the DM’s belief about the
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machine and overruling decisions over time. These results shed light on fundamental limitations

in our ability to learn whether a machine, once deployed, makes better predictions than a human

expert. Our findings further characterize the different forms that mislearning the true nature of

the machine can take, which we trace back to the DM’s overriding decisions. This provides a novel

explanation for the joint production of decisions by machines and experts, and suggests several

guidelines for properly learning whether to overrule the machine.

The learning failures we characterize in this paper do not arise from an intrinsic mistrust bias

against machine-based predictions, such as the algorithmic aversion. Rather, they stem from the

problem of learning about a machine while actually using its predictions to make high-stake deci-

sions. We capture the key features of this situation with four fundamentals: Informativeness, Sub-

stitution, Verification Bias and Exploration-free decisions. Of these four, the last two conditions

are crucial for our findings. Indeed, the DM always properly learns the true nature of the machine

when the DM fully observes, or can act for the purpose of observing the machine’s type. In con-

trast, we expect mislearning to occur even when some of the signals are not informative, or some

complementarity exists between the machine and the DM. Note, however, that the problem may

then become degenerated (when none of the signal are informative, for instance). In any case,

replicating our analysis to these situations should be possible, and similar results should hold.

We also restrict our analysis to two possible machine’s types, mostly for simplicity. But our

framework can be extended to account for more types. Our results should not change overall as

long as the previous fundamentals hold. Indeed, the DM’s belief that the machine outperforms her

expertise is what fundamentally matters when deciding to override the machine. This, in essence,

divides the different possible machine’s types into two distinct partitions depending on whether

or not the type is better than the DM. In this sense, we retrieve a setup with two—albeit more

convoluted—machine types.

Even though we assume them away, a DM may nonetheless be subject to mistrust biases against

the machine in our set-up. Our results indicate that these biases can interact with our results in a

significant way. In particular, the presence of a mistrust bias akin to algorithm aversion sometimes

randomizes the DM’s ability to properly learn the true nature of the machine. These results also

provide novel hypotheses that future experimental research can test.

We focus on mistrust biases in this paper, but our framework can potentially accommodate other

types of biases such as overconfidence and loss-aversion, to cite a few (Benjamin 2019). Further,

our framework can potentially account for situations in which the DM does not perfectly know

her own accuracy, or have a misspecified representation of the machine (Fudenberg et al. 2017).

Alternatively, the machine may provide partial explanations for the machine’s prescription, which
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may help the DM to learn the true machine’s accuracy (see, e.g. Puranam and Tsetlin 2021, for

a way to model explainability).

Note finally that our framework may also be applied to situations where an expert supervises

another expert instead of a machine. Doing so, however, requires assuming that experts learn the

level of expertise solely by observing the ex post accuracy of someone’s judgments. While this

precise setting may exist, experts such as radiologists typically provide a rationale or causal expla-

nation to justify their prescriptions. These explanations are also indicative of someone’s knowledge

and expertise. In other words, a human expert can more directly, and a priori, assess the quality of

someone’s judgment in a way that is difficult with an ML algorithm (see, e.g., Cukier et al. 2021

for more on the difference between machine-based predictions and human cognition). In this sense,

our framework is better suited for, and offers a fruitful approach to exploring the issue of learning

whether human expertise should overrule machine-based prescriptions.
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Appendix A: No-overriding Benchmark

Proof of Theorem 1. We prove this result by first deriving a recursive expression (in terms of

bt−1) for belief bt using Bayes’ rule. Then, we focus on the log-likelihood ratio process Lt defined

by Lt = log(bt/(1 − bt)). Observe that when Lt → ∞ (and/or Lt → −∞) almost surely, then it

immediately follows that bt → 1 (and resp. bt → 0) due to the continuous mapping theorem since

Lt is a continuous monotone transformation of bt.

In the no-overriding benchmark, the DM acts only if SM
t =+, so it follows that

bt =
bt−1

(
αB

)1{SM
t =+,Θt=A}

(
β̄B

)1{SM
t =+,Θt=NA}

bt−1

(
αB

)1{SM
t =+,Θt=A}

(
β̄B

)1{SM
t =+,Θt=NA} + b̄t−1

(
αW

)1{SM
t =+,Θt=A}

(
β̄W

)1{SM
t =+,Θt=NA}

(13)

where 1{} is the indicator variable. Using the definition of Lt, we obtain Lt =Lt−1 +RM
t , where

RM
t ≜ 1{SM

t =+,Θt=A} log

(
αB

αW

)
+1{SM

t =+,Θt=NA} log

(
β̄B

β̄W

)
. (14)

Therefore, Lt is a random walk with i.i.d. random jumps RM
t .

When the machine’s type is Γ∈ {B,W}, then the mean of the random jump is

EΓ[RM
t ] = pαΓ log

(
αB

αW

)
+ p̄β̄Γ log

(
β̄B

β̄W

)
. (15)

If p < pΓ, it follows that the mean EΓ[RM
t ] and, hence, the drift of the random walk Lt is negative so

Lt →−∞ (see Gut 2009, Theorem 9.1). The reverse condition (with strict inequality) implies the

divergence to ∞. If the mean EΓ[RM
t ] equals 0 (p= pΓ), then Lt is a martingale; hence, bt oscillates

(see Theorem 8.3.4 in Chung and Zhong 2001).

Finally, pB and pW are such that pB < pW because αB/β̄B >αW/β̄W, which is implied by Substitu-

tion (4)-(5). Q.E.D.

Appendix B: Learning with Overriding

Proof of Lemma 1. This lemma follows from the fact that posterior probabilities are continuous

and monotone in bt−1 and the boundary values 1 and 0 are on different sides of r due to Substitution

(4)-(5). In particular, the posterior probabilities are

P(Θt =A |SH
t =+, SM

t =−, bt−1) =
αH(bt−1ᾱ

B + b̄t−1ᾱ
W)p

αH(bt−1ᾱB + b̄t−1ᾱW)p+ β̄H(bt−1βB + b̄t−1βW)p̄
,

P(Θt =A |SH
t =−, SM

t =+, bt−1) =
ᾱH(bt−1α

B + b̄t−1α
W)p

ᾱH(bt−1αB + b̄t−1αW)p+βH(bt−1β̄B + b̄t−1β̄W)p̄
.

By solving the following equations for bt−1,

P(Θt =A |SH
t =+, SM

t =−, bt−1) = r and P(Θt =A |SH
t =−, SM

t =+, bt−1) = r (16)
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we obtain the thresholds

b− =

(
r̄pαH

rp̄β̄H

)
ᾱW −βW(

r̄pαH

rp̄β̄H

)
[αB −αW] +βB −βW

and b+ =
β̄W −

(
r̄pᾱH

rp̄βH

)
αW(

r̄pᾱH

rp̄βH

)
[αB −αW] +βB −βW

. (17)

Thus, the result follows. Q.E.D.

Before proving Theorems 2 and 3, we first provide two constructive lemmas and their proofs.

Lemma 3. With overriding, the log-likelihood ratio process Lt is as follows.

Case 1: If b+ > b−, then we have Lt =Lt−1 +RHM
t (Lt−1), where

RHM
t (Lt−1)≜


1{SM

t =+}

[
1{Θt=A} log

(
αB

αW

)
+1{Θt=NA} log

(
β̄B

βW

)]
if Lt−1 ≥Lh

1{SH
t =+,SM

t =+}

[
1{Θt=A} log

(
αB

αW

)
+1{Θt=NA} log

(
β̄B

β̄W

)]
if Lh >Lt−1 >Lℓ

1{SH
t =+} [υ1 + υ2] if Lℓ ≥Lt−1

with Lh ≜ log
(

b+

b̄+

)
, Lℓ ≜ log

(
b−

b̄−

)
and

υ1 ≜ 1{Θt=A}

(
1{SM

t =−} log

(
ᾱB

ᾱW

)
+1{SM

t =+} log

(
αB

αW

))
,

υ2 ≜ 1{Θt=NA}

(
1{SM

t =−} log

(
βB

βW

)
+1{SM

t =+} log

(
β̄B

β̄W

))
.

Case 2: If b+ ≤ b−, then we have Lt =Lt−1 +RHM
t (Lt−1) where

RHM
t (Lt−1)≜


1{SM

t =+}

[
1{Θt=A} log

(
αB

αW

)
+1{Θt=NA} log

(
β̄B

β̄W

)]
if Lt−1 >Lh

1{Θt=A}ν1 +1{Θt=NA}ν2 if Lh ≥Lt−1 ≥Lℓ

1{SH
t =+} [υ1 + υ2] if Lℓ >Lt−1

(18)

with Lh ≜ log
(

b−

b̄−

)
, Lℓ ≜ log

(
b+

b̄+

)
and

ν1 ≜ 1{SM
t =+} log

(
αB

αW

)
+1{SM

t =−}1{SH
t =+} log

(
ᾱB

ᾱW

)
,

ν2 ≜ 1{SM
t =+} log

(
β̄B

β̄W

)
+1{SM

t =−}1{SH
t =+} log

(
βB

βW

)
.

Proof of Lemma 3. As in the proof of Theorem 1, we derive a recursive expression for bt in

terms of bt−1 using Bayes’ rule but this time using the decision-making procedure characterized in

Lemma 1.

Case 1. When b+ > b−, we have the following three regimes

• bt−1 ≥ b+:

P(Θt =A |SH
t =−, SM

t =+, bt−1)≥ r (19)

P(Θt =A |SH
t =+, SM

t =−, bt−1)< r (20)

In this case, SM
t = + is sufficient and necessary to act, which implies the machine overrides the

human’s signal SH
t =−. Further, SH

t =+ is also overruled by SM =−.
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• b+ > bt−1 > b−:

P(Θt =A |SH
t =−, SM

t =+, bt−1)< r (21)

P(Θt =A |SH
t =+, SM

t =−, bt−1)< r (22)

In this case, SM
t = SH

t =+ is the only condition for acting.

• b− ≥ bt−1:

P(Θt =A |SH
t =−, SM

t =+, bt−1)< r (23)

P(Θt =A |SH
t =+, SM

t =−, bt−1)≥ r (24)

In this case, SH
t = + is sufficient and necessary to act. The signal of the human overrides the

machine’s signal in both conflicting cases.

Finally, the belief update when b+ > b− is as follows.

bt =



[
1+

b̄t−1

bt−1

(
αW

αB

)1{Θt=A,SM
t =+}

(
β̄W

β̄B

)1{Θt=NA,SM
t =+}

]−1

if bt−1 ≥ b+[
1+

b̄t−1

bt−1

(
αW

αB

)1{Θt=A,SM
t =+,SH

t =+}
(

β̄W

β̄B

)1{Θt=NA,SM
t =+,SH

t =+}
]−1

if b+ > bt−1 > b−[
1+

b̄t−1

bt−1
ζ
]−1

if b− ≥ bt−1

(25)

where

ζ ≜


[(

ᾱW

ᾱB

)1{SM
t =−}

(
αW

αB

)1{SM
t =+}

]1{Θt=A}
[(

βW

βB

)1{SM
t =−}

(
β̄W

β̄B

)1{SM
t =+}

]1{Θt=NA}


1{SH
t =+}

(26)

Case 2. When b+ ≤ b− we have the following three regimes

• bt−1 > b−:

P(Θt =A |SH
t =−, SM

t =+, bt−1)≥ r (27)

P(Θt =A |SH
t =+, SM

t =−, bt−1)< r (28)

In this case, SM
t = + is sufficient and necessary to act, which implies the machine overrides the

human’s signal SH
t =−. Further, SH

t =+ is also overruled by SM
t =−.

• b− ≥ bt−1 ≥ b+:

P(Θt =A |SH
t =−, SM

t =+, bt−1)≥ r (29)

P(Θt =A |SH
t =+, SM

t =−, bt−1)≥ r (30)

In this case, SM
t =+ or SH

t =+ is sufficient for acting.
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• b+ > bt−1:

P(Θt =A |SH
t =−, SM

t =+, bt−1)< r (31)

P(Θt =A |SH
t =+, SM

t =−, bt−1)≥ r (32)

In this case, SH
t = + is sufficient and necessary to act. The signal of the human overrides the

machine’s signal in both conflicting cases.

Finally the belief update if b− ≤ b+ is as follows.

bt =



[
1+

b̄t−1

bt−1

(
αW

αB

)1{Θt=A,SM
t =+}

(
β̄W

β̄B

)1{Θt=NA,SM
t =+}

]−1

if bt−1 > b−[
1+

b̄t−1

bt−1
ι
]−1

if b− ≥ bt−1 ≥ b+[
1+

b̄t−1

bt−1
ζ
]−1

if b+ > bt−1

(33)

where ζ is defined in (26) and

ι≜

[(
αW

αB

)1{SM
t =+}

(
ᾱW

ᾱB

)1{SM
t =−,SH

t =+}
]1{Θt=A}

[(
β̄W

β̄B

)1{SM
t =+}

(
βW

βB

)1{SM
t =−,SH

t =+}
]1{Θt=NA}

The log-likelihood ratio process Lt is then obtained by Lt = log
(
bt/b̄t

)
in both cases. Q.E.D.

Lemma 4. Consider the following sequences of random variables

• i.i.d. Y1,t with E[Y1,t]> 0 and |Y1,t| ≤ Y1,h where ∞>Y1,h > 0 for t= 1, . . . ,

• i.i.d. Y2,t with P(Y2,t > 0)> 0 and |Y2,t| ≤ Y2,h where ∞>Y2,h > 0 for t= 1, . . . ,

• and, i.i.d. Y3,t with E[Y3,t]≥ 0 and |Y3,t| ≤ Y3,h where ∞>Y3,h > 0 for t= 1, . . . .

Let Zt be a discrete stochastic process governed by Yi,t and two thresholds Zℓ and Zh such that

Zh >Zℓ as follows.

Zt+1 =Zt +Y1,t1{Zt≥Zh} +Y2,t1{Zt∈(Zℓ,Zh)} +Y3,t1{Zt≤Zℓ} . (34)

Then, Zt
a.s.−−→∞.

Proof of Lemma 4. Note that the divergence immediately follows when the mean of Zt+1 −Zt

is positive for any Zt because in that case in all three regions process Zt is driven by random walks

drifting to ∞. Thus, we focus on the most extreme parameter regime in terms of divergence to ∞,

in particular, when the mean of Zt+1 −Zt is nonpositive in (Zℓ,Zh) and 0 for Zt ≤ Zℓ. To prove

this result, we show that there exists a finite (but random) period τ such that process Zt remains

above Zt ≥ Zh for all t > τ . This is sufficient for divergence to ∞ because process Zt is governed
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by a random walk drifting to ∞ above Zh. We prove this in two steps, but first, we define the

following stopping times recursively by assuming, without loss of generality, that Z0 >Zh.

T1 =inf{t :Zt <Zh}, (35)

T̃1 =inf{t > T1 :Zt ≥Lh}, (36)

Ti =inf{t > T̃i−1 :Zt <Zh} ∀i > 1, (37)

T̃i =inf{t > Ti :Zt ≥Zh} ∀i > 1 . (38)

Here, if one of the sets above is empty, i.e., no such t exists, we assign Ti =∞ (and respectively

T̃i =∞) for the corresponding set.

Step 1. In the first step, we prove that P(T̃i <∞|Ti <∞) = 1 for all i. In particular, if process

Zt goes below Zh once, then with probability one, it will cross up Zh in finite steps. This result

also implies that the sequence of infinite stopping times (if it exists) is started by Tj =∞ (but not

T̃j =∞) for some j. To prove this result, first fix i and assume that Ti is finite; then we define a

new sequence of stopping times for process Zt.

V1 =inf{t > Ti :Zt ≤Zℓ} (39)

Ṽ1 =inf{t > V1 :Zt >Zℓ} (40)

Vi =inf{t > Ṽi−1 :Zt ≤Zℓ} ∀i > 1, (41)

Ṽi =inf{t > Vi :Zt >Zℓ} ∀i > 1. (42)

First, note that Vi and Ṽi for i≥ 1 are proper random variables, i.e., they take finite values with

probability one. This is because

P(Vi <∞| Ṽi−1 <∞) = 1 (43)

P(Ṽi <∞|Vi <∞) = 1 . (44)

The first equality holds because as discussed at the beginning of this proof, we focus on the case

where the mean of Zt+1 − Zt in (Zℓ,Zh) is either negative or 0. If negative, Zt is governed by a

random walk drifting to −∞ in (Zℓ,Zh); thus it crosses Zℓ with probability one in finite steps (see,

Theorem 9.1 in Gut 2009, p. 70). If 0, Zt in (Zℓ,Zh) is a martingale and oscillates (see, Theorem 8.3

in Gut 2009, p. 68). The second equality holds because Zt is governed again by an oscillating

random walk when Zt <Zℓ thus it crosses Zℓ in finite steps. Furthermore, Ti <∞; thus, V1 is also

finite. Therefore, it follows that Vi <∞ and Ṽi <∞ for i≥ 1.

To prove that T̃i is finite, we will show that there exists a finite j such that T̃i < Vj. To do so,

define events At = {T̃i ≥ Vt}. Then, the Borel-Cantelli lemma implies the following,

∞∑
t=Ti

P(At)<∞⇒ P(limsup
i→∞

At) = 0 (45)
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First, consider P(A1) = P(T̃i ≥ V1), this probability is bounded, i.e., P(A1)< δ < 1 because Zh−Zℓ is

bounded and Zt has positive size jumps with positive probability in (Zℓ,Zh). Proceeding similarly,

we obtain the following

P(T̃i ≥ Vt) = P(T̃i ≥ Vt−1)P(T̃i ≥ Vt | T̃i ≥ Vt−1)< δt (46)

Therefore, it follows that P(limsupi→∞At) = 0, which implies that there exists a finite j such that

T̃i <Vj. As discussed, Vj is finite; thus, it follows that P(T̃i <∞|Ti <∞) = 1.

Step 2. In this step, we show that there exists a finite j such that Tj =∞ and T̃k <∞ for all

k < j. Define the following events Et = {Tt <∞} for t > 1. Then, the Borel-Cantelli lemma implies

the following
∞∑
t=1

P(Et)<∞⇒ P(limsup
t→∞

Et) = 0 . (47)

In particular, if the summation condition is satisfied, then events Et cannot occur infinitely many

times, i.e., there exists a finite j such that Tj =∞. To show that the summation condition is indeed

satisfied, we construct a finite upper bound for it. Above Zh, process Zt is driven by a random

walk drifting to ∞. Thus, stopping time T1 is defective, i.e., P(T1 <∞)< φ < 1 for some φ (see

Theorem 9.1 in Gut 2009, p.70). Moreover, we bound P(T2 <∞) as follows:

P(T2 <∞) = P(T2 <∞| T̃1 <∞)P(T̃1 <∞|T1 <∞)P(T1 <∞)<φ2 . (48)

In Step 1 of this proof, we show that P(T̃1 <∞|T1 <∞) = 1. Moreover, we have P(T2 <∞| T̃1 <

∞)<φ< 1 because T̃1 <∞ implies that process Zt crosses Zh up in finite steps, and after crossing

Zh, process Zt is again driven by the same random walk drifting to ∞. Proceeding similarly, it

follows that P(Et)<φt. Hence, there exists a finite (but random) j such that Tj =∞, and Step 1

implies that T̃k < ∞ for k < j because Tk < ∞. Therefore, after sufficiently large t, process Zt

always remains above Zh and diverges to ∞. Q.E.D.

Proof of Theorem 2. In this proof, we focus on the log-likelihood ratio process Lt because as

also discussed in the proof of Theorem 1, the continuous mapping theorem implies that the limit

of Lt characterizes the limit of bt. Our proof is based on analyzing the mean of Lt+1 − Lt when

Lt takes different values in comparison to Lh and Lℓ for Case 1 and Case 2 characterized in

Lemma 3. In both cases, process Lt is governed by different random walks with random jumps

whose means and size change depending on the previous state Lt−1.
5 Trivial cases arise when the

mean of Lt+1 −Lt always remains positive regardless of Lt. In particular, Lt diverges to ∞ when

the mean of Lt+1−Lt is always positive despite changing values of Lt due to the strong law of large

5 The log-likelihood ratio process Lt is similar to the oscillating random walk defined in Kemperman (1974) such that
the partition of R consists of (−∞,Lℓ], (Lℓ,Lh) and [Lh,∞).
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numbers because three random walks (for Lt ≥ Lh, Lt ∈ (Lh,Lℓ) and Lt ≤ Lℓ under Case 1) that

establish the trajectory of process Lt all diverge to ∞ (see Theorem 8.3 in Gut 2009, p. 68). As a

result, bt converges to 0 as Lt diverges to ∞. We consider the different values of p in the statement

of the theorem separately.

Step 1. Let p≤ pB. To prove that Lt and hence bt oscillate, we need to show that there exists a

number that process Lt crosses infinitely often (see, for instance, Vatutin and Wachtel 2009 for a

mathematical definition of oscillation). This property (oscillation) holds for a random walk with

a noise term whose mean is 0 (see Theorem 8.2 in Gut 2009, p. 68). However, process Lt does

not satisfy this property because the mean of Lt+1 −Lt is always positive when Lt ≤Lℓ in Case 1

(Lt <Lℓ in Case 2) as discussed. Nevertheless, we can show that process Lt oscillates because the

mean of Lt+1−Lt is either negative or zero when p≤ pB for Lt ≥Lh in Case 1 (Lt >Lh in Case 2).

Therefore, process Lt returns to interval (Lℓ,Lh) in finite steps after lying outside it. Oscillation is

regardless of the sign of the mean of Lt+1 −Lt in (Lℓ,Lh) because process Lt goes out of (Lℓ,Lh)

in finite steps. Specifically, in finite steps, process Lt i) crosses Lh up if the mean of Lt+1 −Lt in

(Lℓ,Lh) is positive, ii) crosses Lℓ down if it is negative, and iii) goes out of (Lℓ,Lh) if it is zero.

To illustrate this process, we focus on Case 1 and the setting where the mean of Lt+1 − Lt in

(Lℓ,Lh) is negative. Define the following stopping times

J =inf{t≥ 1 :Lt ≤Lℓ} (49)

J̃ =inf{t≥ 1 :Lt >Lℓ} (50)

If J and J̃ are proper random variables (i.e., P(J <∞) = P(J̃ <∞) = 1), then process Lt oscillates.

Assume L0 >Lℓ without loss of generality; then J is a proper (almost surely finite) random variable

because process Lt is driven by a random walk drifting to −∞ for Lt > Lℓ. Thus, in finite steps

it will cross Lℓ down. After J steps, process Lt is driven by a random walk drifting to ∞,6 thus

it crosses Lℓ up in finite steps, so J̃ − J is a proper random variable. Since J is also proper,

J̃ = J̃−J+J is also proper. Since Lt crosses Lℓ infinitely often, bt crosses 1/(1+exp(Lℓ)) infinitely

often and, hence, oscillates. The same approach can be repeated for the remaining setting where

the mean of Lt+1 −Lt is positive or zero in (Lℓ,Lh).

The oscillation property also implies that the process Lt and hence bt is recurrent because the

mean of the random jumps is bounded. With probability 1, process Lt will revisit interval (Lℓ,Lh)

for Case 1 in finite steps interval [Lℓ,Lh] for Case 2 in finite steps. Furthermore, intervals that can

be reached from (Lℓ,Lh) with positive probability are also recurrent, which implies Corollary 1.

6 This claim can be proved by invoking Lemma A.2 in Harrison et al. (2012) to show that EB[RHM
t (Lt−1)] > 0 for

Lt−1 ≤Lℓ in Case 1, and Lt−1 <Lℓ in Case 2.
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Step 2. Let p > pB. Then, the mean of Lt+1−Lt when Lt ≤Lℓ for Case 1 and Lt <Lℓ for Case 2

is positive (see Footnote 6). Further, we know from the proof of Theorem 1 that the mean of

Lt+1 −Lt when Lt ≥Lh for Case 1 and Lt >Lh for p > pB is also positive. In Case 1, the mean of

Lt+1 −Lt for Lt ∈ (Lℓ,Lh) is

αHαBp log

[
αB

αW

]
+ β̄Hβ̄Bp̄ log

[
β̄B

β̄W

]
= β̄H

[
αBp log

[
αB

αW

]
+ β̄Bp̄ log

[
β̄B

β̄W

]]
+ β̄HαB

[
αH

β̄H
− 1

]
log

[
αB

αW

]
.

Note that the term above is positive for p > pB. Hence, as discussed Lt diverges to ∞ and bt

converges to 1 for Case 1 when p is larger than pB. In Case 2, the mean of Lt+1−Lt for Lt ∈ [Lℓ,Lh]

is not necessarily positive. When it is positive, we immediately obtain the same result. Nevertheless,

we obtain the same divergence despite having negative or zero mean of Lt+1 −Lt for Lt ∈ [Lℓ,Lh]

as long as the means of Lt+1 −Lt for Lt <Lℓ and Lt >Lh are positive, which is true as proven in

Lemma 4. Thus, using Lemma 4, we capture all possible values of Lt with respect to Lh and Lℓ in

Cases 1 and 2 for p > pB, and show that Lt diverges to ∞, which implies bt converges to 1. Hence,

we conclude the proof. Q.E.D.

Proof of Theorem 3. The first part of the result in this theorem when p ≤ pW follows from

Lemma 4 by considering the reflection of the stochastic process. In particular, updating the con-

ditions in the statement of Lemma 4 as E[Y1,t] ≤ 0, P(Y2,t < 0) > 0 and E[Y3,t] < 0 would imply

Zt
a.s.−−→−∞ in that lemma. This is because the mean of Lt+1−Lt is nonpositive when Lt ∈ [Lh,∞)

in Case 1 (and Lt ∈ (Lh,∞) in Case 2); and is negative when Lt ∈ (−∞,Lℓ] in Case 1 (and Lt ∈

(−∞,Lℓ) in Case 2).7 Thus, the case for p≤ pW follows from Lemma 4 with a slight modification.

To prove the second part of this result p > pW, we focus on Case 1 (Case 2 can be addressed

by adjusting weak and strict inequalities in the same way) by assuming the mean of Lt+1 −Lt is

negative when Lt ∈ (Lℓ,Lh) and define the following stopping times by assuming L0 >Lh without

loss of generality.

T1 =inf{t :Lt <Lh} (51)

T̃1 =inf{t > T1 :Lt ≥Lh} (52)

Ti =inf{t > T̃i−1 :Lt <Lh} for i≥ 2 (53)

T̃i =inf{t > Ti :Lt ≥Lh} for i≥ 2 (54)

Here, if a set is empty, then the stopping times takes the value of ∞. Therefore, if one of the

stopping times Ti or T̃i is not finite for some i, then all the following stopping times for j > i also

are ∞. We first show that
∑∞

i=1 P(Ti <∞)<∞ and then use the Borel-Cantelli lemma to deduce

7 The second part of this claim can be proved by invoking Lemma A.2 in Harrison et al. (2012) to show that
EB[RHM

t (Lt−1)]< 0 for Lt−1 ≤Lℓ in Case 1, and Lt−1 <Lℓ in Case 2.
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that there exists a finite j such that P(Tj =∞ or T̃j =∞) = 1. If Tj =∞, then Lt →∞; otherwise,

(T̃j =∞) then Lt →−∞. Thus, Lt → L, where L ∈ {−∞,∞}; hence bt converges to a Bernoulli

random variable.

First, consider T1; it follows that P(T1 < ∞) < ξ < 1 (i.e., T1 is a defective random variable)

because process Lt is driven by a random walk drifting to ∞ when Lt > Lh and p > pW . Next,

considering T̃1 and T2; we obtain that

P(T̃1 <∞) =P(T̃1 <∞|T1 <∞)P(T1 <∞)< ξ2 (55)

P(T2 <∞) =P(T2 <∞| T̃1 <∞)P(T̃1 <∞)< ξ3 (56)

Here, the first term is strictly less than 1, i.e., P(T̃1 <∞|T1 <∞)< ξ < 1 because process Lt is

driven by random walks drifting to −∞ after T1. The inequality in the second line follows because

Lt is driven by a random walk drifting to∞. Proceeding similarly, it follows that P(Ti <∞)< ξ(2i−1)

and hence
∑∞

i=1 P(Ti <∞) is finite.

Note that we assume at the beginning that the mean of Lt+1−Lt is negative when Lt ∈ (Lℓ,Lh). If

it is positive, the same steps can be followed by redefining stopping times using Lℓ as the threshold

instead of Lh. If it is zero, then stopping times Ti is defined by considering the time when process

Lt enters (Lℓ,Lh) and T̃i is the time when Lt exists (Lℓ,Lh) in any direction. The approach follows

because outside (Lℓ,Lh), process Lt diverges (either to ∞ or −∞ depending on being above Lh or

below Lℓ) and it oscillates in (Lℓ,Lh), which guarantees it remains in (Lℓ,Lh) for finite steps.

More specifically, the main driver of this result is that process Lt may diverge to ∞ when above

Lh and to −∞ when below Lℓ. The sign of the mean between Lℓ and Lh does not affect this

characteristic in the limit. Thus, we conclude the proof. Q.E.D.

Appendix C: Mistrust Bias against the Machine

Proof of Lemma 2. Note that Informativeness (1)-(2) imply that the posterior after + (after

−) is larger than or equal to r (resp. lower than r). Thus, there exist thresholds λ−
Γ , λ

+
Γ ∈ (0,1) for

Γ∈ {B,W} given by

λ−
Γ ≜

r−PΓ(Θt =A |SM =−)

P(Θt =A |SH =+)−PΓ(Θt =A |SM =−)
, (57)

λ+
Γ ≜

PΓ(Θt =A |SM =+)− r

PΓ(Θt =A |SM =+)−P(Θt =A |SH =−)
. (58)

These equations imply that

λP(Θt =A |SH =+)+ λ̄PB(Θt =A |SM =−)≥ r ⇔ λ≥ λ−
B , (59)

λP(Θt =A |SH =−)+ λ̄PB(Θt =A |SM =+)≤ r ⇔ λ≥ λ+
B , (60)

λP(Θt =A |SH =+)+ λ̄PW(Θt =A |SM =−)≤ r ⇔ λ≤ λ−
W , (61)

λP(Θt =A |SH =−)+ λ̄PW(Θt =A |SM =+)≥ r ⇔ λ≤ λ+
W , (62)
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because the left-hand sides of the first and third inequalities are increasing and the second and the

fourth ones are decreasing in λ.

First, note that λ+
Γ is increasing in PΓ(Θt =A |SM =+), and λ−

Γ is decreasing in PΓ(Θt =A |SM =

−). We also know from Substitution (4)-(5) that PB(Θt = A |SM =+)> PW(Θt = A |SM =+), and

PW(Θt =A |SM =−)> PB(Θt =A |SM =−). Thus, the ranking between thresholds at the statement

of the proposition follows. We conclude the proof by defining λmin ≜ max(λ−
W, λ

+
W) and λmax =

min(λ−
B , λ

+
B ). Q.E.D.

Before proving Theorem 4, we first provide a constructive lemma and its proof.

Lemma 5. For λ∈ (λmin, λmax), unique thresholds b−λ ∈ (0,1) and b+λ ∈ (0,1) exist such that

λP(Θt =A |SH =+)+ (1−λ)P(Θt =A |SM =−, bt−1)≥ r ⇔ bt−1 ≤ b−λ , (63)

λP(Θt =A |SH =−)+ (1−λ)P(Θt =A |SM =+, bt−1)≥ r ⇔ bt−1 ≤ b+λ . (64)

Proof of Lemma 5. We obtain the thresholds by solving the following equations.

λP(Θt =A |SH =+)+ (1−λ)P(Θt =A |SM =−, b−λ ) = r , (65)

λP(Θt =A |SH =−)+ (1−λ)P(Θt =A |SM =+, b+λ ) = r . (66)

The closed-form expressions are

b−λ =
φ−

λ (1−αW)−βW

βB −βW +φ−
λ (α

B −αW)
and b+λ =

β̄W −φ+
λα

W

φ+
λ (α

B −αW)+βB −βW

where

φ−
λ =

p

p̄

[
(1−λ)− r+λP(Θt =A |SH

t =+)

r−λP(Θt =A |SH
t =+)

]
and φ+

λ =
p

p̄

[
(1−λ)− r+λP(Θt =A |SH

t =−)

r−λP(Θt =A |SH
t =−)

]
.

Finally, we can similarly define bHλ =min(b−λ , b
+
λ ) and bMλ =max(b−λ , b

+
λ ) as in Corollary 1. Q.E.D.

Proof of Theorem 4. Note that Lemma 5 shows that there exist thresholds b−λ , b
+
λ ∈ (0,1) for

λ∈ (λmin, λmax) as in the case of Lemma 1. Thus, the exact same steps at which thresholds b−, b+ ∈

(0,1) are replaced by b−λ , b
+
λ ∈ (0,1) in the proofs of Lemma 3, Theorems 2-3 will imply this result

because the results in those theorems do not depend on the exact values of thresholds b− and b+,

as long as they are interior to (0,1). Q.E.D.

Proof of Theorem 5. Note that Lemma 1 also characterizes the DM’s decision rule for the biased

case. Nevertheless, the belief updating (6) is replaced with (7.2) with a bias term µ when the

machine’s prediction is not correct. Thus, we need to modify Lemma 3 slightly to incorporate this

change. In particular, the updated log-likelihood ratio process L̃t is as follows.
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Case 1: If b+ > b−, we have L̃t = L̃t−1 + R̃HM
t (L̃t−1) where

R̃HM
t (L̃t−1)≜


1{SM

t =+}

[
1{Θt=A} log

(
αB

αW

)
+1{Θt=NA}µ log

(
β̄B

βW

)]
if L̃t−1 ≥Lh

1{SH
t =+,SM

t =+}

[
1{Θt=A} log

(
αB

αW

)
+1{Θt=NA}µ log

(
β̄B

β̄W

)]
if Lh > L̃t−1 >Lℓ

1{SH
t =+} [υ̃1 + υ̃2] if Lℓ ≥ L̃t−1

with Lh ≜ log
(

b+

b̄+

)
, Lℓ ≜ log

(
b−

b̄−

)
and

υ̃1 ≜ 1{Θt=A}

(
1{SM

t =−}µ log

(
ᾱB

ᾱW

)
+1{SM

t =+} log

(
αB

αW

))
,

υ̃2 ≜ 1{Θt=NA}

(
1{SM

t =−} log

(
βB

βW

)
+1{SM

t =+}µ log

(
β̄B

β̄W

))
.

Case 2: If b+ ≤ b−, we have L̃t = L̃t−1 + R̃HM
t (L̃t−1) where

R̃HM
t (L̃t−1)≜


1{SM

t =+}

[
1{Θt=A} log

(
αB

αW

)
+1{Θt=NA}µ log

(
β̄B

β̄W

)]
if L̃t−1 >Lh

1{Θt=A}ν̃1 +1{Θt=NA}ν̃2 if Lh ≥ L̃t−1 ≥Lℓ

1{SH
t =+} [υ̃1 + υ̃2] if Lℓ > L̃t−1

(67)

with Lh ≜ log
(

b−

b̄−

)
, Lℓ ≜ log

(
b+

b̄+

)
and

ν̃1 ≜ 1{SM
t =+} log

(
αB

αW

)
+1{SM

t =−}1{SH
t =+}µ log

(
ᾱB

ᾱW

)
,

ν̃2 ≜ 1{SM
t =+}µ log

(
β̄B

β̄W

)
+1{SM

t =−}1{SH
t =+} log

(
βB

βW

)
.

Note that the thresholds in the theorem are determined as the break-even points of the following

equations.

pαB log

(
αB

αW

)
+ p̄β̄BµB log

(
β̄B

β̄W

)
= 0 (68)

pαW log

(
αB

αW

)
+ p̄β̄WµW log

(
β̄B

β̄W

)
= 0 (69)

pαH

(
ᾱBµH log

(
ᾱB

ᾱW

)
+αB log

(
αB

αW

))
+ p̄β̄H

(
βB log

(
βB

βW

)
+ β̄BµH log

(
β̄B

β̄W

))
= 0 (70)

The left-hand sides of these equations correspond to the mean of L̃t+1− L̃t when evaluated at µ in

place of the thresholds at corresponding values of L̃t. In the remainder of the proof, we explain the

sign of the mean of L̃t+1 − L̃t given the machine’s type and the value of µ. When the sign of this

mean is known, the results follow from the proofs of previous theorems on which we elaborate.

• when Γ=B,

—µ≥ µB and µ > µH implies that the mean of L̃t+1 − L̃t for Lℓ ≥ L̃t for Case 1 (Lℓ > L̃t for

Case 2) is negative. Further, the mean of L̃t+1 − L̃t for L̃t ≥Lh for Case 1 (L̃t >Lh for Case 2) is

nonpositive. Thus, the proof of the first part (for p≤ pW) of Theorem 3 applies to this parameter

regime.
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—µB >µ>µH implies that the mean of L̃t+1 − L̃t for Lℓ ≥ L̃t for Case 1 (Lℓ > L̃t for Case 2)

is positive. Further, the mean of L̃t+1 − L̃t for L̃t ≥Lh for Case 1 (L̃t >Lh for Case 2) is negative.

Thus, the proof of the second part (for p > pW) of Theorem 3 applies to this parameter regime.

—µH ≥ µ≥ µB implies that the mean of L̃t+1 − L̃t for Lℓ ≥ L̃t for Case 1 (Lℓ > L̃t for Case 2)

is nonnegative. Further, the mean of L̃t+1 − L̃t for L̃t ≥ Lh for Case 1 (L̃t > Lh for Case 2) is

nonpositive. Thus, the proof of the first part (for p≤ pB) of Theorem 2 applies to this parameter

regime.

— if µB >µ and µH ≥ µ implies that the mean of L̃t+1 − L̃t for Lℓ ≥ L̃t for Case 1 (Lℓ > L̃t for

Case 2) is nonnegative. Further, the mean of L̃t+1− L̃t for L̃t ≥Lh for Case 1 (L̃t >Lh for Case 2)

is positive. Thus, the proof of the second part (for p > pB) of Theorem 2 applies to this parameter

regime.

• when Γ=W,

—µ≥ µW implies that the mean of L̃t+1 − L̃t for L̃t ≥ Lh for Case 1 (L̃t > Lh for Case 2) is

nonpositive. Further, the mean of L̃t+1− L̃t for Lℓ ≥ L̃t for Case 1 (Lℓ > L̃t for Case 2) is negative

for all µ≥ 1. Thus, the proof of the first part (for p≤ pW) of Theorem 3 applies to this parameter

regime.

—µW > µ implies that the mean of L̃t+1 − L̃t for L̃t ≥ Lh for Case 1 (L̃t > Lh for Case 2) is

positive. Further, the mean of L̃t+1 − L̃t for Lℓ ≥ L̃t for Case 1 (Lℓ > L̃t for Case 2) is negative for

all µ≥ 1. Thus, the proof of the second part (for p > pW) of Theorem 3 applies to this parameter

regime.

Finally, we show that µH > 1. Note that the following term is always positive when evaluated at

µH = 1; see Footnote 6.

pαH

(
ᾱBµH log

(
ᾱB

ᾱW

)
+αB log

(
αB

αW

))
+ p̄β̄H

(
βB log

(
βB

βW

)
+ β̄BµH log

(
β̄B

β̄W

))
To make this equal to 0, µH has to be larger than 1 because it is decreasing in µH. Hence, we

conclude the proof. Q.E.D.
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