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The rapid adoption of AI technologies by many organizations has recently raised concerns that AI may even-

tually replace humans in certain tasks. In fact, when used in collaboration, machines can significantly enhance

the complementary strengths of humans. Indeed, because of their immense computing power, machines can

perform specific tasks with incredible accuracy. In contrast, human decision-makers (DM) are flexible and

adaptive but constrained by their limited cognitive capacity. This paper investigates how machine-based

predictions may affect the decision process and outcomes of a human DM. We study the impact of these

predictions on decision accuracy, the propensity and nature of decision errors as well as the DM’s cognitive

efforts. To account for both flexibility and limited cognitive capacity, we model the human decision-making

process in a rational inattention framework. In this setup, the machine provides the DM with accurate but

sometimes incomplete information at no cognitive cost. We fully characterize the impact of machine input

on the human decision process in this framework. We show that machine input always improves the overall

accuracy of human decisions, but may nonetheless increase the propensity of certain types of errors (such as

false positives). The machine can also induce the human to exert more cognitive efforts, even though its input

is highly accurate. Interestingly, this happens when the DM is most cognitively constrained, for instance,

because of time pressure or multitasking. Synthesizing these results, we pinpoint the decision environments

in which human-machine collaboration is likely to be most beneficial.

Key words : machine-learning, rational inattention, human-machine collaboration, cognitive effort

1. Introduction

The increasing adoption of smart machines and data-based technologies have questioned the future

role of human-based decisions in organizations (Kleinberg et al. 2017). While new technologies

sometimes substitute for labor, a wealth of evidence suggest that they can also complement human

skills (see Felten et al. 2019 and references therein). Indeed, the purpose of many real-world applica-

tions of supervised machine learning is not to produce a final decision based solely on an algorithm’s

output, but rather to provide useful information in the form of automated predictions to a human

decision-maker (Lipton 2016, Agrawal et al. 2018). Various sectors currently seek to harness such

human-machine complementarity, including the defense and health care industries (DARPA 2018),

legal and translation services (Katz 2017) or e-sports (OpenAI 2019) among others.

Humans and machines complement each other because machines often substitute for only a subset

of the different tasks required to perform an activity (Autor 2015). This is typically the case for

1
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judgment and decision problems. Indeed, human decision-makers rely on their cognitive flexibility

to integrate information from vastly diverse sources, including the very context in which these

decisions are made (Diamond 2013, Laureiro-Mart́ınez and Brusoni 2018). Machines, by contrast,

are much more rigid and can only extract a limited subset of this information (Marcus 2018).

Hence, humans may have access to predictive variables that, for example, a machine-learning (ML)

algorithm cannot see (Cowgill 2018). However, machine-extracted information can have higher

accuracy because of the enormous and reliable quantitative capacity of machines. In contrast,

the cognitive capacity of humans is limited, and hence human decision-makers need to constantly

balance the quality of their decisions with their cognitive efforts (Payne et al. 1993).

For instance, when deciding on which stocks to invest in, mutual fund managers estimate both

idiosyncratic shocks (for stock picking) and aggregate shocks (for market timing) (Kacperczyk

et al. 2016). Because of their superior computing capability, ML algorithms identify idiosyncratic

shocks with greater success, but fail to detect aggregate ones compared to humans (Fabozzi et al.

2008, Abis 2017). In the medical domain, ML algorithms can easily process large and rich medical

histories, but may not obtain valuable information from the personal interaction between physicians

and their patients. Similarly, many HR managers base their hiring decisions on information that

ML algorithms cannot access (Hoffman et al. 2017).

To the extent that data-based technologies improve the provision of certain information, the

co-production of decisions by humans and machines typically boosts the overall quality of these

decisions (Mims 2017). For instance, the collaboration between human radiologists and machines

improves the overall accuracy of diagnoses for pneumonia over the performances of radiologists

alone, or machines alone (Patel et al. 2019). Effective human-machine collaborations such as these1

are sometimes coined “centaurs” (half-human, half-machine) in the literature and popular press

(Case 2018). Yet, the provision of machine-based predictions may not improve all aspects of human

decisions. For instance, Stoffel et al. (2018) find that when radiologists take into account the

deep-learning analysis of ultrasound images, the diagnoses of breast tumors significantly improve.

This is consistent with the claim that human-machine collaboration improves overall performance.

However, this improvement mainly stemmed from a radical decrease in false negatives, while the

false positive rate did not significantly change.

This impact of machine-based predictions on decision errors, and more generally the time and

cognitive efforts that humans put into their decisions, remains largely unknown. As a result, the

participation of machines in human decisions may have unintended consequences. Increasing the

1 The idea of human-machine collaborations –or chess centaurs– were popularized by World Chess Champion Gary
Kasparov following his notorious defeat against IBM Deep Blue in 1997. An online chess tournament in 2005 confirmed
the superiority of chess centaurs over machines.
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number of false positive rates, for instance, may exert undue pressure on a health care delivery

system and put healthy patients at risk. And increasing the cognitive load of a decision-maker may

slow down the decision process, which may result in delays and congestion.

In this paper, we consider the defining characteristics of human and machine intelligence to

address the following fundamental questions: What is the impact of having machine-based pre-

dictions on human judgment? In which ways do these predictions influence the decision-making

process of humans, the extent of their cognitive efforts, and the nature of their decision errors? In

which decision environments are the collaborations between humans and machines more fruitful?

To answer these questions, we consider an elementary decision problem in which an ML algorithm

(the machine) assists a human decision-maker (the DM) by assessing part of, but not all, the

uncertainty that the DM faces. We model this problem within the theory of rational inattention

formalized by Sims (2003, 2006) to capture the most fundamental sources of complementarity

between machine and human intelligence. Namely, in our setup, the DM leverages her cognitive

flexibility to integrate various sources of information, including her domain knowledge or specific

aspects of the context in which the decision is made. Nonetheless, the DM is constrained by her

limited cognitive capacity, so that assessing information requires exerting cognitive efforts. The

more effort the DM exerts, the more accurate her assessment is. In contrast, the machine does not

suffer from this limitation and can provide an accurate assessment of some information at no cost.

The machine, however, cannot assess all sources of information, the DM’s domain knowledge and

the decision context in particular.

The rational inattention framework, within which we develop our model, enables us to represent

the DM’s cognitive flexibility and limited capacity in a coherent manner. Indeed, this theory

assumes that people rationally decide on what piece of information to look for, in what detail,

and they do so in an adaptive manner. In particular, the framework endogenously accounts for

people’s scarce resources, such as time, attention and cognitive capacity as well as the nature of

the decision environment. People are free to use any information source, in any order, to generate

knowledge at any precision level, but limited cognitive resources lead to information frictions and

hence, possible mistaken judgments. In other words, the framework does not impose any a priori

restrictions on people’s search strategy (cognitive flexibility) other than a limit on the amount of

processed information (limited cognitive capacity). More generally, this theory naturally connects

the fundamental drivers in human decision-making, such as payoffs, beliefs, and cognitive difficulties

in a rational learning setup, and is perceived as a bridging theory between classical and behavioral

economics. There is also a growing body of empirical research that finds evidence of decision-making

behavior consistent with the theory (Maćkowiak et al. 2018).
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In this setup, we analytically compare the DM’s choice, error rates, expected payoff, cognitive

effort, and overall expected utility when the DM decides alone and when she is assisted by a

machine. Our analysis first confirms the aforementioned superiority of the human-machine col-

laboration. In particular, we show that accuracy and the DM’s overall expected utility always

(weakly) improve in the presence of a machine. We further find that the machine always reduces

false negative errors.

Yet, our results also indicate that machine-based predictions can impair human decisions. Specif-

ically, we find that machine-assisted decisions sometimes increase the number of false positives

compared to when the DM decides alone. (Incidentally, this finding, along with our result that the

machine reduces the false negative rates, offers some theoretical foundation for the empirical results

of Stoffel et al. 2018.) In addition, the machine can induce the DM to exert more cognitive efforts

in expectation, and make her ultimate choice more uncertain a priori. In other words, the machine

can worsen certain types of decision errors, and increase both the time and variance involved in

a decision-making process, which is known to create costly delays and congestion (Alizamir et al.

2013).

We fully characterize the conditions under which these adverse effects occur in our setup. A

prominent case is when the DM’s prior belief is relatively weak and her cognitive cost of assessing

information is relatively high (i.e., her cognitive capacity is reduced due to exogenous time pressure,

or consumed by competitive tasks because of multitasking). Yet, those are conditions under which

using a machine to offload the DM is most appealing. In other words, improving the efficiency of

human decisions by relying on machine-based predictions may in fact backfire precisely when these

improvements are most needed. These results hold at least directionally for any decision setting

(in terms of payoff and belief structures) and we explain in detail where and why they occur.

The rest of the paper is organized as follows. In §2, we relate our work to the existing literature.

In §3, we introduce our basic model of humans and machines and follow in §4 by characterizing the

choice behavior and cognitive effort that humans spend, as well as their implied decision errors. In

§5, we analyze the impact of machines on these and explain our findings. In §6, we discuss further

extensions to the decision and learning environment and investigate their implications for human

and machine interaction. Finally, in §7 we present our concluding remarks.

2. Related Literature

Over the past decade, researchers in artificial intelligence have repeatedly demonstrated that algo-

rithmic predictions can match, and at times even outperform, the effectiveness of human decisions

in many contexts (see, for instance, Liu et al. 2019 for a recent and systematic review on health

care). More recently, however, an emerging literature has focused on improving the collaboration
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between machines and humans as opposed to pitching them against each other. For instance, a very

recent stream of research in computer science aims at optimizing algorithms by letting them auto-

matically seek human assistance when needed (e.g., Raghu et al. 2019, Wilder et al. 2020, Bansal

et al. 2019). More generally, the field aims to improve the interpretability of ML-based predictions

so as to facilitate their integration into a human decision-making process (e.g., Doshi-Velez and

Kim 2017).

Researchers in management science have also started to study the integration of human judg-

ments into the development of ML algorithms. Ibrahim et al. (2020), for instance, explore how the

elicitation process of human forecasts boosts the performance of an algorithm in an experimental

setup. Petropoulos et al. (2018) similarly study how human judgment can be used to improve the

selection of a forecasting model. Arvan et al. (2019) further provide a literature review on the

integration of human judgment into quantitative forecasting methods.

Overall, these different streams of research focus on improving the interaction between humans

and machines, either to better train an algorithm or to help humans account for an algorithm’s out-

put in their decisions. Not much is known, however, about the impact of machine-based predictions

on the human decision-making process.

A few authors have nonetheless analyzed this human-machine interaction in a theoretical

decision-making framework. Agrawal et al. (2018) in particular postulate that AI and humans

complement one another in that algorithms provide cheap and accurate predictions while humans

determine, at a cost, the potential payoffs associated with the decision. Specifically, the authors

enrich a standard choice model under uncertainty, in which the DM needs to exert effort to learn

her utility function. Our work addresses a different form of complementarity, in which human cog-

nition is flexible but of limited capacity while the machine is rigid but has ample capacity. More

recently, Bordt and von Luxburg (2020) propose representing the human-machine joint decision

process in a dynamic multi-arm bandit framework. The goal is to study under which conditions

humans and machines learn to interact over time and dynamically improve their decisions. In con-

trast, we study the impact of machine-based predictions on human cognition and decisions. Our

setup is therefore static, but it endogenizes the human cognitive efforts.

The rational inattention theory on which our model is based was first introduced by Sims (2003,

2006) and has since been applied in many different contexts, such as discrete choice and pric-

ing (Matějka 2015, Boyacı and Akçay 2018), finance (Kacperczyk et al. 2016) or service systems

(Canyakmaz and Boyaci 2020) among many others. Several empirical and experimental studies

have further added support to the theory (see, for instance, Bartoš et al. 2016 or Caplin and

Dean 2015, and Maćkowiak et al. 2018 for a recent survey). Abis (2017), in particular, proposes

an empirical test for a simple model of financial markets made of rationally inattentive humans
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and machines with unconstrained capacity. While machines and humans decide independently and

may even compete in this setup, our model considers their complementarity.

More generally, our model represents a problem of information acquisition. As such, our work is

related to the hypothesis testing Bayesian framework, in which the DM runs a sequence of imperfect

tests and dynamically updates her belief accordingly about which decision is best (DeGroot 1970).

This approach has been very fruitful for studying a variety of problems, such as the management of

research projects or diagnostic services (McCardle et al. 2017, Alizamir et al. 2013, 2019). However,

the framework is less suited to represent the cognitive process of a decision-maker. In particular,

this Bayesian framework typically assumes that the precision of each test (in the form of false

positive and false negative rates) or the order in which they are run are exogenously determined.

In contrast, our rational inattention setup does not put any restrictions such as these, and fully

endogenizes the level of precision as well as the associated cognitive effort in a tractable way. This

enables us to properly account for the flexibility of human cognition (Diamond 2013, Laureiro-

Mart́ınez and Brusoni 2018), which is important for our purpose.

Finally, our setup assumes that humans assess information from multiple sources, which jointly

designate the true state of the world. This can also be conceptualized as learning states that are

characterized by multiple attributes. In this regard, our paper is related to the rich literature on

search with multiple attributes (see, for instance, Branco et al. 2012, Olszewski and Wolinsky

2016, Sanjurjo 2017, and references therein). In particular, Huettner et al. (2019) study a multi-

attribute discrete choice problem in a rational inattention framework. They retrieve the generalized

multinomial logit choice structure in Matějka (2015) for situations where attributes have different

information costs. In our model, some attributes are easier to assess when the machine is present,

as in Huettner et al. (2019), but we specifically investigate the impact of this on human choice, the

extent of decision errors and cognitive efforts.

3. A Model of Human and Machine

In this section, we first present a decision model that captures the flexibility and limited cognitive

capacity of the human in a rational inattention framework. We then consider the case where the

DM is assisted by a machine.

Consider a human decision-maker (which we will refer to as DM hereon), who needs to correctly

assess the true state of the world ω ∈ {g, b}, which can be good (ω= g) or bad (ω= b). We denote

by µ the DM’s prior belief that the state is good (µ = P{ω = g}). The DM can exert cognitive

efforts to evaluate the relevant information and adjust her belief accordingly. The more effort she

exerts, the more accurate her evaluation is. When available, a machine-learning algorithm (which

we simply refer to as “the machine” in the following) assists the DM by accurately evaluating some
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of this information, at no cognitive cost, to account for its immense computing capabilities. Based

on her assessment, the DM then announces whether or not the state is good. We denote this choice

by a∈ {y,n} (yes/no), where a= y when the DM chooses the good state and a= n otherwise. The

choice is accurate if she chooses a= y and the true state is ω = g, or if a= n and ω = b. The DM

enjoys a (normalized) unit of payoff if her decision is accurate, and nothing otherwise. Thus, her

expected payoff is the probability that she will make an accurate choice, which we define as the

accuracy of her decision. The DM’s objective is then to maximize the expected accuracy of her

decision,2 net of any cognitive costs.

3.1. The Human Decision-Maker

The DM is constrained by her limited cognitive capacity, so that assessing available

data/information requires exerting cognitive efforts, a process we formalize within the theory of

rational inattention. In this framework, the DM is aware of her cognitive limitations and endoge-

nously optimizes how to allocate her effort accordingly. To do this, the DM elicits informative

signals about the true state of the world from different sources of information which reduce her

prior uncertainty.

Specifically, the DM can elicit any signal s of any precision level about state ω ∈Ω = {g, b} from

any information source. We define an information processing strategy as a joint distribution f (s, ω)

between signals and states. The DM is free to choose any information processing strategy as long

as it is Bayesian consistent with her prior belief (i.e.,
∫

s
f (s, g)ds = µ must hold). This implies

that choosing a strategy f (s, ω) is equivalent to determining f(ω|s), the DM’s posterior belief that

the true state is w given signal s. In other words, the DM is free to choose the precision of her

posterior belief. Thus, the DM may elicit different signals from different information sources in any

particular sequence, and make her search for new signals contingent on previous ones to determine

the precision of her posterior belief.3 She may also decide not to process any information at all so

that f(g|s) = µ or equivalently f(s, g) = µf(s).

Cognitive Effort. The DM’s belief about the state of the world specifies the prevalent initial

uncertainty. By generating an informative signal s, the DM updates her prior µ to posterior f(g|s).

We measure this uncertainty in terms of entropy, which we denote as H(p) for a probability p that

the world is in the good state, where H(p) =−p log p− (1− p) log (1− p).4 Entropy is a widely used

2 In other words, DM’s payoffs are the same whether she correctly identifies the good state (a= y when ω= g) or the
bad one (a= n when ω = b). This is for the sake of clarity only, though. Our analysis directly extends to a general
payoff structure, as we discuss in §6.

3 Eliciting informative signals can also be imagined as the DM asking a series of yes-or-no questions and observing
the outcomes. By choosing an information processing strategy, the DM is effectively choosing what questions to ask
and in which sequence.

4 For a general discrete probability distribution function P = {pω;ω ∈ Ω,
∑
ω∈Ω pω = 1}, entropy is defined as H(P ) =∑

ω∈Ω pω log pω.
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measure of uncertainty in the economics literature, because of its different properties and concavity

structure in particular, and further corresponds to the expected utility loss from not knowing the

state (Frankel and Kamenica 2019).

In our setup, H(µ) measures the prior level of uncertainty that the DM needs to resolve, and

thus fully captures the difficulty level of the decision task. The task presents no difficulty when

the DM is fully informed about the state, that is, when µ = 1 or µ = 0 for which H(µ) is null.

The decision task is most difficult when the DM has no prior information about the states, that is,

when µ= 1/2 which maximizes H(·). We thus refer to H(µ) as the task difficulty in the following.

Similarly, ex-post entropy H(f(g|s)) measures the level of uncertainty upon eliciting signal s and

thus Es[H(f(g|s))] is the expected level of remaining uncertainty under strategy f , before the DM

processes any information. We refer to Es[H(f(g|s))] as the residual uncertainty in the following.

The expected reduction in uncertainty is then equal to H(µ)−Es[H(f(g|s))], which corresponds

to the mutual information between prior and posterior distributions in information theory and

specifies the expected amount of elicited information.5 This quantity is always positive, that is,

information always decreases uncertainty, due to the concavity of entropy H(·).
Reducing uncertainty, however, comes at a cognitive cost. The larger the reduction in uncertainty,

the more information is processed and thus the more cognitive effort is required. Following the

rational inattention literature, we assume that the DM’s cognitive cost is linear in the expected

reduction in uncertainty. Formally, the cognitive cost associated with an information processing

strategy f is equal to

C (f) = λ (H (µ)−Es [H (f(g|s))]) (1)

where λ> 0 is the marginal cognitive cost of information which we refer to as the information cost

in the following.

Overall, information cost λ determines how constrained the DM is in terms of time, attention,

and cognitive ability. It may represent the inherent difficulty of assessing a piece of information or

the extent to which the DM’s cognitive capacity is consumed by competitive tasks, because of time

pressure or multitasking. In the latter case, λ is the shadow price of the constraint corresponding

to the DM’s limited cognitive capacity. Thus, the higher the value of λ, the more effort the DM

needs to exert to elicit signals that reduce uncertainty. In the limit where λ is infinite, the DM

cannot assess any information and only decides based on her prior belief µ. In contrast, the DM

does not have any limit on her capacity when λ= 0, and can then perfectly assess the true state

of the world.

5 Alternatively, the mutual information can be interpreted as the expected number of questions that the DM needs
to ask to implement her information processing strategy according to coding theory (Cover and Thomas 2012). The
more questions the DM asks, the more she learns about the true state of the world, which is reflected in the form of
a tighter posterior belief.
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Decisions and Accuracy. The DM chooses information processing strategy f , at cost C(f),

to yield updated belief f(g|s). Given this updated belief, the DM then chooses her action a∈ {y,n}

to maximize accuracy, such that a = y if f(g|s) > f(b|s) and a = n otherwise (recall that in our

setup, the expected payoff is equal to the expected accuracy). Thus, the prior probability that the

DM will choose action a= y before she starts assessing any information6 is equal to

p(f)≡
∫

s

I{f(g|s)≥f(b|s)}f (s)ds,

where I denotes the indicator function, which yields expected accuracy A(f),

A(f)≡
∫

s

max
a∈{y,n}

{f(g|s)Ia=y + f(b|s)Ia=n}f (s)ds =

∫
s

max{f(g|s), f(b|s)}f (s)ds.

The Decision Problem. Anticipating her expected posterior payoff upon receiving signals, the

DM first decides on her information acquisition strategy, taking into account the cognitive cost

associated with its implementation. The DM then chooses her action. It follows that given her

choice of information processing strategy f , the DM enjoys an expected total value of

V (f)≡A(f)−C(f).

She determines her information processing strategy by solving the following optimization problem:

max
f

V (f) (2)

s.t.

∫
s

f (s, g)ds= µ,

where the constraint guarantees that the DM’s information processing strategy is Bayesian consis-

tent with her prior belief.

Given prior µ, we denote by V ?(µ), the optimal expected value such that V ?(µ) = V (f?), where

f? solves (2). Similarly, we define by A?(µ), C?(µ) and p?(µ) the optimal accuracy, cognitive cost,

and choice probability, respectively, given prior µ.

Taken together, our setup captures both the cognitive flexibility and cognitive limitations of

humans. In this framework, the DM endogenously decides how to allocate her limited attention

and how much effort to put into resolving the prevalent uncertainty. In doing so, the DM chooses

how much error she will tolerate and the precision of her decisions. This framework further allows

us to account for machine-based predictions in the DM’s decision process, as we show next.

6 Note that the DM commits to a decision with certainty ex-post, i.e., after she assesses the available information. But
because the signals she will obtain are unknown before she starts the process, her final decision is random ex-ante.
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3.2. Accounting for the Machine

To assess the state of the world, the DM leverages her cognitive flexibility (Diamond 2013, Laureiro-

Mart́ınez and Brusoni 2018) to integrate information from diverse sources. The machine, by con-

trast, only extracts a limited subset of this information (Marcus 2018). Thus, we partition the set

of information sources from which signals s are drawn into two distinct subsets: a first one that

both the machine and the DM can evaluate, and a second one which is only available to the DM.

We represent the aggregate information contained in these two subsets as random variables X1

and X2, respectively. In particular, r.v. X2 summarizes the predictive variables that are unobserv-

able to the ML algorithm. These may include information drawn from the DM’s domain knowledge

or specific aspects of the context in which the decision is made. To put this setup into perspective,

consider the medical domain. Random variable X1 may then represent the statistical summary of

all the tangible information that is observable to the algorithm, such as the patient’s full medical

history. Random variable X2, on the other hand, may represent the information that the physician

obtains through personal interaction with the patient. In contrast to the ML algorithm, the DM

can elicit signals from both sources. Recall that we do not impose any restriction on the DM’s

strategy, particularly the order in which she may assess these sources.

Realization xi ∈ {−,+} of Xi, i= 1,2, is such that xi = + (resp. xi =−) is indicative of a good

(resp. bad) state. The true state of the world is good only if all available information is positive,7

that is, ω = g if and only if x1 = x2 = +. We refer to π(x1, x2)> 0 with (x1, x2) ∈ {−,+}2 as the

DM’s prior distribution of (X1,X2). Hence, the DM’s prior belief that the state is good is equal to

µ= π (+,+) . In the absence of a machine, the DM needs to allocate her cognitive effort between

the assessments of x1 and x2.

In contrast to the human, the machine does not suffer from any cognitive limitations due to its

virtually unbounded computing capacity. We assume that it can extract the exact value of x1 at no

cognitive cost, so that the DM can dedicate her effort solely to the assessment of x2. In the presence

of the machine, therefore, the DM only assesses x2 so as to update her new belief, which accounts

for the machine’s evaluation x1. Specifically, define µx as the DM’s new belief that the state is

good, given the machine’s evaluation x∈ {−,+}. We have, using Bayes’ rule with µ= π (+,+),

µ− = 0 and µ+ =
µ

µ + π (+,−)
> µ. (3)

That is, a negative evaluation by the machine reveals that the true state is bad, while the DM’s

belief that the state is good increases with a positive evaluation. It follows from Section 3.1 that

when the machine output is x, the optimal expected value, accuracy, cognitive cost, and choice

probability, are equal to V ?(µx), A?(µx), C?(µx) and p?(µx), respectively.

7 When one positive information suffices to determine the good state, the problem can be made equivalent to the
current situation by relabeling the good state and the positive information as the bad and negative ones, respectively.
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4. Optimal Decisions, Accuracy and Cognitive Cost

In this section, we characterize optimal choice p?(·) as a function of prior belief µ∈ (0,1), from which

we deduce the optimal expected value, accuracy, and cognitive cost (V ?, A?, and C?, respectively).

To that end, we follow Matějka and McKay (2015) who establish that problems of the type (2)

where the DM chooses strategy f , are equivalent to problems in which she directly selects the

conditional probabilities of choosing action a given state w.8 The intuition for this equivalence is

that a one-to-one correspondence exists between actions a and signals s in the optimal solution.

Indeed, eliciting distinct signals that lead to the same posterior belief (and hence decision) incur

additional costs without changing the DM’s decision, which is suboptimal. In a discrete choice

setting, this yields an optimal solution of GMNL (generalized multinomial logit) form where payoffs

include endogenously determined terms. The next Lemma formalizes this result in our setup.

Lemma 1. Given prior 0<µ< 1, the optimal choice probability p∗ (µ) is the unique solution to

the following equations in p∈ [0,1],

p = (1−µ)pb +µpg (4)

pg =
pe1/λ

pe1/λ + 1− p
(5)

pb =
p

p+ (1− p)e1/λ
. (6)

Further, we have

A?(µ) = (1−µ) (1− pb) +µpg (7)

C?(µ) = λ [H (p)− (1−µ)H (pb)−µH (pg)] (8)

Probabilities pg and pb correspond to the optimal conditional probabilities that the DM chooses y

given that the true state is g and b, respectively. Probability p is then the (unconditional) probability

of choosing y according to consistency equation (4). Probabilities pg and pb also determine the

extent of the mistakes the DM tolerates. Specifically, the optimal false positive and false negative

rates, which we denote as α? and β?, respectively, are equal to

α? = (1−µ)pb (9)

β? = µ(1− pg) (10)

such that α? +β? = 1−A?.

8 Note that this is an “as if” result such that the DM is not actually optimizing over choice probabilities but using an
optimal information processing strategy that is behaviorally equivalent to the induced optimal choice probabilities.
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4.1. Optimal Decisions

Lemma 1 states that the optimal choice probability p?(µ) corresponding to problem (2) is the

solution of a system of equations, which also determines decision accuracy A?(µ), cognitive cost

C?(µ), and hence expected value obtained V ?(µ) = A?(µ)−C?(µ). The next result provides the

explicit solution to these equations.

Theorem 1. The optimal choice probability p?(µ) that solves (4) , (5) and (6) is equal to

p? (µ) =


0 if µ≤ µ

µ

1−e−1/λ − 1−µ
e1/λ−1 if µ< µ<µ

1 if µ≥ µ
(11)

where

µ=
1

e1/λ + 1
< 1/2 < µ=

e1/λ

e1/λ + 1
.

Furthermore, p? (µ) is non-decreasing in µ, µ is increasing in λ and µ̄ is decreasing in λ.

Overall, Theorem 1 characterizes the effect of DM’s prior belief µ on her optimal choice prob-

ability p?(µ). If the DM’s prior belief about the true state of the world is sufficiently strong (i.e.,

µ≥ µ or µ≤ µ), exerting any effort to learn more about this state is not worth the cognitive cost.

The DM then makes an immediate decision without assessing any information, based solely on her

prior (i.e., p? (µ) = 1 or 0). Otherwise, the DM exerts effort to assess the available information until

her belief about the true state of the word is sufficiently strong, at which point she commits to a

choice. But, because she does not know what this assessment will reveal a priori, her final decision

is uncertain ex-ante (i.e., 0< p?(µ)< 1). Furthermore, the stronger the DM believes a priori that

the world is in the good state, the more likely she will decide accordingly by choosing a= y (i.e.,

p? (µ) is non-decreasing in µ).

Theorem 1 also enables characterizing the impact of information cost λ on the optimal choice

probability, which we denote by p?(λ) in the next result with a slight abuse of notation.

Corollary 1. Given prior 0<µ< 1, a positive (possibly infinite) threshold λ̄ exists such that

the optimal choice probability is equal to

p? (λ) =


µ

1−e−1/λ − 1−µ
e1/λ−1 if λ< λ̄

0 if λ≥ λ̄ and µ< 0.5
1 if λ≥ λ̄ and µ> 0.5,

(12)

where

λ̄(µ) =

∣∣∣∣log
1−µ
µ

∣∣∣∣−1 if µ 6= 0.5 and λ̄= +∞ if µ= 0.5.

Further, p? (λ) is decreasing (resp. increasing) in λ, and λ̄ increasing (resp. decreasing) in µ when

µ< 0.5 (resp. µ> 0.5).
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Figure 1 Effect of prior belief µ on DM’s tolerance to information cost λ̄

Hence, the DM exerts effort only if the information cost is not too high, that is, less than a

threshold. In this case, her probability of choosing the good state increases with the information

cost if she favors this state a priori (µ > 1/2), and decreases otherwise. Indeed, the higher the

information cost, the less information the DM assesses and thus the less likely her updated belief

will significantly change from her prior. Otherwise, she decides a priori that the state is good (resp.

bad) if her prior is larger (resp. smaller) than 1/2. In this case, the DM jumps to conclusions as

she relies solely on her prior belief without assessing any information. In this sense, threshold λ̄

determines the DM’s tolerance to the information cost. Taken together, Corollary 1 states that

the set of prior beliefs for which the DM processes information is an interval centered at 1/2, that

shrinks with information cost λ.

Figure 1 depicts the impact of prior µ on threshold λ̄. When the DM does not have much prior

knowledge about the true state of the world (the value of µ is close to 1/2), she is ready to exert

a lot of cognitive effort to learn more and hence tolerate high information costs (the value of λ̄ is

high). In particular, the DM always assesses information and exerts effort when the true state is

perfectly unknown (λ̄= +∞ for µ= 1/2). As the DM is more certain a priori about the true state

(µ approaches 0 or 1), she is less willing to exert effort and jumps to conclusions for lower values

of information costs (λ̄ decreases as µ approaches 0 or 1).

4.2. Decision Accuracy and Cognitive Effort

From Lemma 1 and Theorem 1, we obtain A?(µ), C?(µ) and V ?(µ) in closed forms, as stated by

the following result,

Corollary 2. Given prior µ, A?(µ), C?(µ) and V ?(µ) are equal to

A? (µ) =


1−µ if µ≤ µ
e

1
λ

e
1
λ+1

if µ< µ<µ

µ if µ≥ µ
(13)
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C?(µ) =

{
λ [H (µ)−ϕ (λ)] if µ< µ<µ

0 otherwise
(14)

V ? (µ) =


1−µ if µ≤ µ

λ
[
log
(
e

1
λ + 1

)
−H (µ)

]
if µ< µ<µ

µ if µ≥ µ
(15)

where

ϕ (λ)≡ log
(
e

1
λ + 1

)
− 1

λ

e
1
λ

e
1
λ + 1

. (16)

Further, ϕ (λ) is increasing in λ, with ϕ(0) = 0 and limλ→∞ϕ (λ) =H (0.5) = log 2.

Function ϕ (λ) is the residual uncertainty Es[H(f(g|s))] (see Section 3.1) at optimality. The

higher the information cost, the less precise the elicited signals are, and thus the less uncertainty

is reduced. Per Corollary 2, residual uncertainty ϕ (λ) is fully determined by the information cost

and is independent of the prior. In fact, as long as the DM chooses to process information (i.e.,

µ < µ < µ), the expected accuracy of her decision depends solely on the information cost and

not on her prior belief. Figure 2a illustrates this for a fixed λ. Here, the red dotted curve given

by max(µ,1− µ) corresponds to the decision accuracy level the DM obtains when she bases her

decision solely on her prior belief (i.e., λ→∞). The solid blue curve is the accuracy function A(µ)

for a finite information cost value, which is constant when the DM chooses to process information.

The difference between these two curves precisely corresponds to the gain in accuracy the DM

enjoys due to cognitive effort. When the decision task is the most difficult (i.e., when the DM is

most uncertain with µ= 0.5), the DM obtains the highest accuracy gain, while the magnitude of

this gain depends on the information cost.

In contrast, the DM’s prior affects expected value V ? through task difficulty H(µ), if she chooses

to exert effort. Specifically, the task difficulty increases the reduction in uncertainty H(µ)−ϕ(λ)

that the DM’s effort brings about. Thus, Corollary 2 implies that the expected uncertainty reduc-

tion and hence the optimal expected cost increase, while the expected value decreases with the

task difficulty (i.e., as µ approaches 1/2) which is illustrated in Figure 2b. Similar to Figure 2a, the

dotted curve corresponds to the expected value the DM obtains when there is no cognitive effort,

in which case it is equal to the expected accuracy. The difference between these two curves gives

the value gain the DM enjoys due to her cognitive effort, which is itself the difference between

expected value and decision accuracy.

The structure of optimal cost C? in Corollary 2 sheds further light on thresholds µ and µ̄.

Indeed, these thresholds determine when the task difficulty is exactly equal to the optimal reduced

uncertainty, that is, H(µ) =H(µ̄) = ϕ(λ). If µ < µ or µ > µ̄, the level of task difficulty is already
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Figure 2 DM’s accuracy and value functions, and corresponding gains due to cognitive effort

lower than the reduced uncertainty that any cognitive effort would achieve in optimality, that is,

H(µ)<ϕ(λ), and the DM prefers to decide a priori, without assessing any information.

That the optimal accuracy is independent of the prior stems from a well-known property of

rationally inattentive choice and the fact that the DM maximizes accuracy (net of cognitive costs).

Indeed, when some information is processed at optimality, rationally inattentive agents always

form the same posterior belief regardless of their prior (see Caplin and Dean 2013). In fact, these

optimal posteriors correspond exactly to the belief thresholds that define whether it is economically

attractive for the DM to process information (µ and µ), which depend only on the payoffs and

information cost λ. Intuitively speaking, this means that the DM sharpens her belief by processing

costly information, up until the point beyond which it is no longer justified. More specifically, in

our context, the DM’s optimal posterior belief that the state is good given the aggregate signals

that lead to the action a= y (resp. a= n) is precisely µ (resp. µ) when she processes information.

Additionally, since the payoff structure is symmetric in the states, these thresholds (hence, the

optimal posteriors) are also symmetric. That is, the DM’s posterior belief that the state is good

given action a= y (i.e., µ) is equal to her posterior belief that state is bad given a= n (i.e., 1−µ).

In our setup, these are also equal to the accuracy, as it is just the expectation of these over the

choice (action) probabilities.

4.3. Decision Errors

Being constrained on cognitive capacity, the decision-maker is bound to make choices based on

partial information. Indeed, eliminating all uncertainty is never optimal (ϕ(λ)> 0 for λ> 0). This
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implies that accuracy is strictly less than one and thus the DM may make false positive and false

negative errors, with rates α? and β?, respectively. From Theorem 1, we obtain these error rates

in closed form in the following corollary.

Corollary 3. Given prior µ, error rates α?(µ) and β?(µ) are equal to

α? (µ) =


0 if µ≤ µ

1−µ if µ≥ µ
µ(e1/λ+1)−1

e2/λ−1 otherwise

(17)

β? (µ) =


µ if µ≤ µ
0 if µ≥ µ

e1/λ−µ(e1/λ+1)
e2/λ−1 otherwise.

(18)

If the DM is confident enough that the state is bad (µ ≤ µ), she chooses a = n without any

cognitive effort, preventing her from making a false positive error (α? = 0) but maximizing her

chance of making a false negative one (β? = µ). The reverse is true (a= y, α? = 1−µ and β? = 0)

when the DM is sufficiently confident that the state is good (µ ≥ µ̄). Otherwise, DM processes

some information and the error rates depend on both the prior and the information cost (with

0<α? < 1−µ and 0<β? <µ).
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Figure 3 Error rates α? and β? as a function of prior µ for λ= 1.

Figure 3 illustrates the effect of the DM’s prior on the error rates. Both α? and β? are piecewise

linear and unimodal functions of µ. In particular, when the DM exerts effort (µ< µ< µ̄), the false

positive rate decreases, while the false negative one increases as the prior increases. Note that an

increase in prior µ has two conflicting effects on the false positive rate. On one hand, the world

is more likely to be in the good state, which decreases the chance of a false positive error. On

the other hand, the DM is more likely to choose action a= y for a higher level of µ per Theorem

1, which increases the chance of a false positive error. In essence, Corollary 3 indicates that the

second effect always dominates the first one. A similar result holds for the false negative rate.
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5. Impact of Machine Input on Human Decisions

Thus far, we have considered a rationally inattentive DM that decides alone. We now investigate

how the DM’s decision process and its outcomes change when she is assisted by a machine-based

assessment. In particular, we compare the DM’s decisions, the extent of errors she makes, and the

amount of effort she expends with and without the machine.

5.1. Machine-Assisted Decision-Making

In the presence of a machine, the DM first observes the machine’s output x1, which determines her

new belief µx, x ∈ {+,−}, according to (3). The DM then dedicates all her cognitive capacity to

evaluating x2. We denote by p?m(µ) the resulting ex-ante probability that the DM chooses a= y as

a function of her initial prior belief µ. Similarly, A?m(µ), C?
m(µ), V ?

m(µ), α?m(µ) and β?m(µ) denote

decision accuracy, cognitive cost, expected value, and error rates, respectively, that the DM achieves

in the presence of the machine. The following (immediate) lemma characterizes these different

metrics.

Lemma 2. Given prior µ, we have

p?m(µ) =
µ

µ+
p?
(
µ+
)
, α?m(µ) =

µ

µ+
α?
(
µ+
)

β?m(µ) =
µ

µ+
β?
(
µ+
)

A?m(µ) = 1− µ

µ+
+

µ

µ+
A?
(
µ+
)
, C?

m(µ) =
µ

µ+
C?
(
µ+
)
, V ?

m = 1− µ

µ+
+

µ

µ+
V ?
(
µ+
)
.

Thus, given information cost λ, the decision’s outcomes in the presence of the machine can be

described with two free parameters (µ,µ+) ∈ S ≡ {(x, y) ∈ [0,1]2, s.t. x< y}; prior µ, and updated

prior µ+ when the machine gives a positive signal on X1.

5.2. Impact on Decision Accuracy and Value

Since the machine provides accurate information at no cognitive cost, the machine always improves

the expected accuracy and total value of the DM, as stated by the following result.

Proposition 1. For all λ≥ 0 and (µ,µ+)∈ S, we have A?m ≥A? and V ?
m ≥ V ?.

Figure 2 illustrates Proposition 1. The accuracy levels that can be achieved with a machine for

all combinations of (µ,µ+) ∈ S correspond to the convex hull of the accuracy curve in Figure 2a

(solid blue curve) without the machine. All these points lie above the curve and hence provide

greater accuracy. Similarly, the convex hull of the value curve in Figure 2b depicts the set of all

possible expected values that the DM can achieve with a machine, showing that it always increases

the DM’s expected value.

This result provides theoretical support for the growing empirical literature, which shows that

human-machine collaborations boost overall accuracy. Interestingly, Proposition 1 is partly driven
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by our premise that human cognition is flexible. This feature corresponds in our setup to the

unrestricted feasible set of information processing strategies (other than the Bayesian consistency

requirement). Indeed, when a priori restrictions are imposed on this feasible set, and hence human

cognition is less flexible, accuracy can be shown to sometimes decrease in the presence of the

machine.

5.3. Impact on Decisions

The machine improves the expected accuracy and total value of the decision by influencing the

DM’s choice. The next result determines how the presence of the machine affects this choice as a

function of prior µ and posterior belief µ+.

Theorem 2. Given information cost λ, we have

i) If µ+ ≤ µ, then p?m = p? = 0.

ii) If µ≤ µ and µ+ ∈
(
µ,µ

)
, then p?m > p

? = 0.

iii) If µ≤ µ and µ+ ≥ µ, then p?m > p
? = 0.

iv) If µ< µ< µ+ <µ, then p?m > p
?.

v) If µ ∈
(
µ,µ

)
and µ+ ≥ µ, then threshold µ̂c exists such that p?m > p? if µ < µ̂ and p?m ≤ p?

otherwise.

vi) If µ≥ µ, then 1 = p? > p?m.

Further, threshold µ̂c is equal to

µ̂c =

(
e1/λ + 1− e

1/λ− 1

µ+

)−1
≥ 1/2 (19)

and is decreasing in µ+.

Overall, Theorem 2 identifies necessary and sufficient conditions under which the presence of

the machine decreases the DM’s probability of choosing a= y. This happens when the DM’s prior

belief is strong enough (µ̂c < µ), and a positive assessment by the machine boosts this belief to a

sufficiently high level (µ+ ≥ µ̄). In particular, threshold µ̂c is the value of the prior µ, at which the

direction of the impact of the machine changes.

Figure 4 illustrates this result in parameter space S, for a given λ. The partition of parameter

space S in six different subsets corresponds to cases i-vi in the theorem. Cases i, ii and iii depict

situations in which the DM does not exert any effort in the absence of the machine and chooses

a = n as a result. This happens when her prior is sufficiently low (i.e., µ ≤ µ) per Theorem 1.

Similarly, case vi corresponds to situations in which the DM chooses a = y a priori because her

prior is sufficiently high (i.e., µ≥ µ). In cases iv and v, however, the DM always exerts effort to

assess information in the absence of the machine. The figure demonstrates that threshold µ̂c divides
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Figure 4 Impact of the machine on DM’s decision in parameter space S, for λ= 1.

space S into two (top-right and bottom-left) areas, such that the presence of the machine decreases

the DM’s probability of choosing the good state (i.e., p?m ≤ p?), when (µ,µ+) lies in the top-right

area, and increases the choice probability otherwise.

This result stems from the fact that the machine sometimes dispenses the DM from exerting any

effort as well as the impact of the information cost on the DM’s choice. To see why, consider the

effect of the machine on the DM’s choice probability as a function of the information cost, which

we characterize next.

Corollary 4. We have the following:

• If µ≤ 0.5, then p?m ≥ p?.

• If µ> 0.5, then threshold λ∗ exists such that p?m ≥ p? if λ< λ∗ and p?m ≤ p? otherwise.

Further, threshold λ∗ is decreasing in prior belief µ with,

λ∗ = log

(
µ+µ+µ− µ+

µ (1 −µ+)

)−1
.

In other words, when the DM believes a priori that the good state is more likely (µ > 1/2),

the presence of the machine reduces her probability of choosing a = y if the information cost is

sufficiently high (λ > λ∗) and increases this probability otherwise. Figure 5 illustrates the result

and depicts threshold λ∗ as a function of prior µ.

Without the machine, probability p? is increasing in the information cost when the DM favors

the good state a priori, that is, µ> 1/2 (per Corollary 1). This is because the higher the information
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Figure 5 Impact of the machine on DM’s decision as a function of information cost λ and prior µ, for µ+ = 0.8

cost, the less information the DM assesses and thus the less likely it is that she will deviate from her

prior choice. In the presence of the machine, a positive assessment by the machine boosts the DM’s

belief, further amplifying this effect. In fact, when information cost λ is greater than threshold

λ(µ+) defined in Corollary 1, a positive assessment by the machine prompts the DM not to exert

any additional effort and immediately choose a= y upon receiving the machine’s assessment (since

0.5<µ<µ+). Thus, probability p?m, the ex-ante probability of choosing the good state, corresponds

exactly to the chance of a positive result by the machine. And since the machine does not exert

any cognitive effort, this probability is independent of the information cost. Hence, probability

p? increases, while probability p?m remains constant and the former dominates the later when the

information cost is sufficiently large.9

In other words, a DM without machine sticks to her ex-ante choice with high probability under

high information cost. In contrast, a DM assisted by a machine exclusively relies on the machine’s

result under high information cost. If the machine is not sufficiently likely to confirm the DM’s

prior, the presence of the machine reduces the DM’s chance of choosing the good state. It increases

this probability otherwise. In effect, the machine may increases the variability of the DM’s decision.

5.4. Impact on Decision Errors

From Proposition 1, we know that the machine always improves accuracy and hence reduces the

overall probability of making a mistake. But Theorem 2 indicates that the machine changes the

ex-ante probability of choosing an action. This, in turn, should affect the nature of errors that the

DM is likely to make. The next result characterizes this effect.

9 By the same token when µ < 1/2, the choice probability is non-increasing in the information costs which explains
why we have p? < p?m in this case.
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Theorem 3. Given information cost λ, β?m ≤ β for all µ∈ [0,1]. Further, we have

i) If µ+ ≤ µ, then α?m = α? = 0.

ii) If µ≤ µ and µ+ ∈ (µ,µ), then α?m >α
? = 0.

iii) If µ≤ µ and µ+ ≥ µ, then α?m >α
? = 0.

iv) If µ< µ< µ+ <µ, and µ+ ∈ (µ,µ), then α?m >α
?.

v) If µ ∈
(
µ,µ

)
and µ+ ≥ µ, then threshold µ̂fp < µ̂c exists such that α?m > α? if µ < µ̂fp, and

α?m ≤ α? otherwise.

vi) If µ≥ µ, then α?m <α
?.

Further, threshold µ̂fp is equal to

µ̂fp =

(
e2/λ + e1/λ− e

2/λ− 1

µ+

)−1
(20)

and is decreasing in µ+.
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Figure 6 Impact of the machine on DM’s false positive error rate in parameter space S, for λ= 1.

Overall, Theorem 3 states that the machine always improves the false negative rate and thus

decreases the DM’s propensity of choosing a = n when the state is actually good. This happens

even when the machine induces the DM to choose a= n more a priori (i.e., p?m ≤ p? when µ≥ µ+
c

per Theorem 2). However, the machine sometimes boosts the false positive rate and thus increases

the chance that the DM will choose a= y while the state is actually bad. This happens if the DM’s

prior belief is not too strong (µ < µ̂fp). The machine decreases the false positive rate otherwise.
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In fact this may happen even when the machine raises the possibility of making this mistake by

increasing the overall probability of choosing the good state (i.e., when µ̂fp <µ< µ̂c per Theorem

2).

Figure 6 illustrates this result in parameter space S, for a given λ. It demonstrates that threshold

µ̂fp divides space S into two (top-right and bottom-left) areas, such that the presence of the

machine decreases the DM’s probability of making a false positive type error (i.e., α?m ≤ α?), when

(µ,µ+) lies in the top-right area, and increases otherwise. The effect of information cost λ on DM’s

error rates, however, is more subtle as the next corollary shows.

Corollary 5. Given prior µ and posterior µ+ > 0.5, we have

• If µ≤ µ∗ = 4µ+ 1−µ+

(2−µ+)
2 , then α?m ≥ α?.

• If µ∗ < µ < 0.5, there exists two thresholds λfp and λfp such that α?m ≥ α? if λ < λfp and

λ> λfp. Otherwise α?m ≤ α?.

• If µ≥ 0.5, α?m ≥ α? if λ< λfp. Otherwise α?m ≤ α?.

For µ+ ≤ 0.5, we have α?m ≥ α?.

Corollary 5 establishes that regardless of the cost of information, if the DM’s prior is sufficiently

low, the machine always increases the DM’s propensity of making a false positive error which is

consistent with Theorem 3. This is because when the DM sufficiently favors the bad state, she

chooses a = n more often, which greatly reduces her chance of making a false positive error. In

fact, when µ < µ, she never makes a false positive error. On the other hand, a positive machine

assessment may render the DM more uncertain (when µ+ is close to 0.5) or may greatly favor the

good state, prompting her to make more false positive errors.

When the DM’s prior is too low, the information cost plays a central role in determining the

machine’s impact on the DM’s decision errors. To understand this effect, first consider the case

where the DM initially favors the good state (i.e., µ> 0.5). When the information cost is sufficiently

low, it is easier for the DM to distinguish the states and less likely that she will make a decision

error. However, the machine can increase the DM’s chances of making a false positive error by

increasing her prior to a sufficiently high level where she chooses a= y directly without acquiring

further information. On the other hand, when the information cost is high, the DM without the

machine is likely to make a false positive error as she is inclined to choose a= y based on her prior

belief (see Corollary 1). The machine, however, can decrease this chance by completely revealing

the bad states.

A more subtle effect of the information cost emerges when the DM is sufficiently uncertain, but

favors the bad state initially (µ is close but strictly less than 0.5). Again, when the information

cost is sufficiently low, she makes fewer false positive errors without the machine as she can still
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distinguish the states, and the machine may induce her to choose a= y directly without acquiring

further information. However, contrary to the previous case, she also makes fewer false positive

errors without the machine when the information cost is sufficiently high, as she is inclined to choose

a= n based on her prior belief. Thus, the machine only helps the DM to reduce her false positive

errors for moderate information cost levels. Figure 7 illustrates this. The figure plots information

cost thresholds λfp and λfp as functions of prior belief µ for the case where µ+ > 0.5. The prior

belief µ at which the two curves meet precisely corresponds to µ∗. We provide the closed-form

characterizations of the two information cost thresholds in the Appendix.
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Figure 7 Impact of the machine on DM’s false positive error in information cost λ and prior µ, for µ+ = 0.9

5.5. Impact on Cognitive Effort

The machine improves the expected value of human decisions, V ? =A?−C?, by increasing accuracy

A? (Proposition 1) due to a decrease in decision errors, but also a change of error types (Theorem

3). An additional and perhaps more intuitive channel by which the machine might improve this

expected value is cognitive cost C?. Indeed, the machine provides information at no cost and may

partially relieve the DM of her cognitive effort. This, in turn, should improve the decision’s expected

value. Yet, the following result, one of our main findings, shows that this is not always the case. In

fact, the machine sometimes increases the DM’s cognitive cost with C?
m >C

?.

Theorem 4. Given information cost λ we have,

i) If µ+ ≤ µ, then C?
m =C? = 0.

ii) If µ≤ µ and µ+ ∈
(
µ,µ

)
, then C?

m >C
? = 0.

iii) If µ≤ µ and µ+ ≥ µ, then C?
m =C? = 0.
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iv) If µ< µ< µ+ <µ, then threshold µ̂e ≤ 1/2 exists such that C?
m >C

? if µ< µ̂e and C?
m ≤C?

otherwise.

v) If µ∈
(
µ,µ

)
and µ+ ≥ µ, then 0 =C?

m <C
?.

vi) If µ≥ µ, then C?
m =C? = 0.

Furthermore, threshold µ̂e is the unique value of µ, for µ<µ<µ+ <µ, that satisfies

H(µ)− µ

µ+
H(µ+) = (1− µ

µ+
)ϕ(λ) (21)

and is decreasing in µ+.
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Figure 8 Impact of the machine on DM’s cognitive effort in parameter space S, for λ= 1

Theorem 4 identifies the necessary and sufficient conditions under which the machine induces

the DM to exert more effort. This happens when the DM sufficiently favors the bad state a priori

(µ < µ̂e ≤ 1/2), which is illustrated in Figure 8. In this case, the task difficulty increases with a

positive machine output and the DM needs to exert more effort.

More generally, the machine affects the DM’s cognitive cost via the task difficulty and the residual

uncertainty (H(µ) and ϕ(λ), respectively, with C? =H(µ)−ϕ(λ)) but in opposite directions. On

one hand, the machine always provides additional information and thus always reduces the task

difficulty in expectation (H (µ)>EX1
H(µX1)). This task simplification contributes to reducing the

DM’s cognitive effort. Note that the effect is ex ante. The DM expects the machine to reduce the

difficulty before obtaining the machine assessment. Ex post, a positive result of the machine can

increase the task difficulty (i.e., H(µ) < H(µ+)). On the other hand, the machine assessment is
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precise and hence always decreases the residual uncertainty. In particular, the state is known when

the machine’s result is negative and, thus, the machine always reduces the residual uncertainty in

expectation (ϕ (λ) > P (X1 = 1)ϕ (λ)). This gain in precision contributes to increasing the DM’s

cognitive effort.

Hence, the machine induces the DM to exert more effort when the precision gain dominates the

task simplification that the machine brings about. This happens when the prior is sufficiently small

and the information cost is large enough, as stated by the following corollary.

Corollary 6. If µ+ ≥ 0.5 and µ > 1− µ+, then C?
m ≤ C?. Otherwise, a unique threshold λ∗e

exists such that C?
m >C

? if λ> λ∗e and C?
m ≤C? otherwise. Furthermore, threshold λ∗e satisfies

H (µ)− µ
µ+H (µ+)

1− µ
µ+

=ϕ(λ∗e) (22)

and is increasing in prior belief µ.
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Figure 9 Impact of the machine on DM’s cognitive effort in information cost λ and prior µ, for µ+ = 0.7

In other words, if the DM sufficiently believes that the state is good (µ> 1−µ+), the machine

always decreases her cognitive costs in expectation. Otherwise, the machine increases the cognitive

cost when the information cost is sufficiently large (λ> λ∗e). This means, perhaps surprisingly, that

a machine induces more cognitive efforts when the DM is not sure about the good state and is

already experiencing a high level of cognitive load (i.e., for a high λ), but reduces these efforts

when she is relatively sure about the good state or has already ample cognitive capacity (i.e., for

a low λ). Figure 9 illustrates this. The figure depicts λ∗e as a function of prior belief µ for the case

where µ+ = 0.7. Note that λ∗e is defined only for belief values that are less than 1− µ+ = 0.3 and

determines whether the machine increases the DM’s cognitive effort or not.
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6. Generalized Payoffs

Our base model assumes that the DM’s payoff corresponds to the overall accuracy of her decisions.

Accuracy is indeed the main performance metric of interest in the empirical literature on machine-

assisted decisions. However, our framework can also account for a general payoff structure of the

form u(a,ω), for (a,ω) ∈ {y,n} × {g, b}. An analysis similar to our basic case can show that our

results and insights continue to hold in this more general setup. Nonetheless, this general payoff

structure creates an asymmetry in the DM’s incentives that our previous analysis does not capture.

Specifically, a DM who cares only about accuracy does not prefer one state over the other. By

contrast, an asymmetric payoff structure may induce the DM to allocate more effort toward a

specific state at the expense of the other. This has implications for her choices and decision errors.

For instance, if identifying the bad state is more important (as is perhaps the case in a medical

setting where it corresponds to a sick patient), the DM may tolerate false negatives more and

choose a= n more often.

More specifically, we can normalize any payoff structure u(a,ω) such that u (y, g) = 1 and

u (n, g) = 0 without loss of generality (see Appendix). To avoid any trivial solution, we assume

that u(n, b)> u(y, b) (otherwise, the payoff of a= y dominates the payoff of a= n in all states of

the world and the DM directly chooses the former without processing information). In this setup,

difference δ = u(n, b)− u(y, b) denotes the net value of correctly identifying the bad state. (The

net value of correctly identifying the good state is always equal to one.) Thus, the DM prefers to

correctly identify the bad state over the good state if and only if δ > 1. In our base model, δ = 1

with u(n, b) = 1 and u(y, b) = 0, so that the DM is indifferent between identifying the good and the

bad states.

Figure 10 depicts the impact of the machine on the DM’s decision (analogous to Figure 4) for

δ < 1 and δ > 1. The figures demonstrate that the structure of our result continues to hold for

more general payoffs. In addition, the figure reveals that the set of values of beliefs µ and µ+ for

which p?m ≥ p? widens as δ increases. Indeed, increasing δ decreases the likelihood that the DM will

choose a= y as this option becomes a less attractive alternative. Accordingly, the threshold level

µ on the DM’s prior belief that warrants immediate ex-ante a= y decision increases. That is, the

DM needs to be more confident about the good state to choose a= y without the need to spend

further cognitive effort. According to Theorem 2, we already know that the machine induces the

DM to choose a= y when her posterior is less than µ.

Similar results hold for the false positive error rate and expected cognitive effort that the DM

exerts. The set of prior values for which the machine induces fewer false positives (α?m ≤ α?) and

reduces cognitive effort (C?
m ≤C?) shrinks as δ increases (see Appendix). And as in our base case,

the machine consistently reduces the false negative rate regardless of the incentive structure across

states.
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Figure 10 Impact of incentive structures on DM’s decision (λ= 1)

7. Concluding Remarks

Humans have always been interested in harnessing technology and machine capabilities for com-

petitive advantage. With the advent of data-based technologies and AI, the collaboration between

humans and machine has moved even more to the forefront. This stems from the increasing recog-

nition that human and machines can complement each other in performing tasks and making

decisions. In this paper, we develop an analytical model to study the impact of such collaborations

on human judgment and decision-making. Our model incorporates the quintessential distinguishing

features of human and machine intelligence in a primary decision-making setting under uncertainty:

the flexibility of humans to attend to information from diverse sources (and, in particular, the

human domain knowledge and the decision context), but under limited cognitive capacity, and in

contrast, the rigidity of machines that only process a limited subset of this information, but with

great efficiency and accuracy.

We integrate these features endogenously utilizing the rational inattention framework, and ana-

lytically characterize the decisions as well as the cognitive effort spent. Comparing the case when

the human decides alone to the case with machine input, we are able to discern the impact of

machine-based predictions on decisions and expected payoff, accuracy, error rates, and cognitive

effort. To put these results in perspective, consider a generic medical assessment setup, in which

machine-based predictions (e.g., ML algorithm processing digital images) provide diagnostic input

to the physician. The physician can conduct more assessments and tests with the patient. When

both assessments are positive, then the patient is “sick.” The prior reflects the true nature of the

disease’s incidence within the patient population (probability of patient being sick).
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Our findings suggest that the machine improves overall diagnostic accuracy (Proposition 1) by

decreasing the number of misdiagnosed sick patients (Theorem 3). The machine further boosts

the physician’s propensity to diagnose patients as healthy when the disease’s incidence is high

(Theorem 1), and to misdiagnose healthy patients more often when the incidence is low. The

physician also exerts less cognitive efforts with the machine, when the disease’s incidence is high

(Theorem 4). In contrast, the machine induces the physician to exert more cognitive effort when

the disease’s incidence is low and the physician is under significant time pressure (Corollary 6).

In this example, the patient is sick when both assessments are positive, which corresponds to our

basic setup. Other information structures, however, are possible. For instance, consider a generic

judicial ruling task, in which machine-based predictions (e.g., ML algorithm checking evidence

authenticity, or lie-detection test) provide evidence to the judge. The judge can analyze additional

data relevant to the case. When any assessment is positive, then the suspect is “guilty.” The prior

reflects the true nature of the crime level within the suspect population (probability of suspect

being guilty). As we briefly mention in Section 3.2, our basic setup can account for this situation by

relabeling the good state and the positive information in our model as the bad and negative ones,

respectively. This also reverses the effect in our results, as Table 1 depicts. This table provides a

flavor of the different implications that could arise from our findings in two hypothetical settings

fitting to our context.

Medical assessment & diagnostic accuracy Judicial ruling & conviction accuracy
• Overall diagnostic accuracy is improved • Overall conviction accuracy is improved

• Fewer misdiagnosed sick patients • Fewer acquitted guilty suspects

• More patients declared healthy when the
disease incidence is high

• More suspects declared guilty when crime
level is low

• More misdiagnosed healthy patients when
the disease incidence is low

• More convicted non-guilty suspects when
crime level is high

• Physician spends less cognitive effort to
diagnose when the incidence is high

• Judge spends less cognitive effort to assess
evidence when crime level is low

• Physician spends more cognitive effort to
diagnose when the incidence is low and time
is constrained

• Judge spends more cognitive effort to
assess evidence when the crime level is high
and time is constrained

Table 1: Impact of the machine on human decisions for two generic settings

As the above examples highlight, the incorporation of machine-based predictions on human deci-

sions is not always beneficial, neither in terms of the reduction of errors nor the amount of cognitive

effort. The theoretical results we present underscore the critical impact machine-based predic-

tions have on human judgment and decisions. Our analysis also provides prescriptive guidance on
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when and how machine input should be considered, and hence on the design of human-machine

collaboration. We offer both hope and caution.

On the positive side, we establish that, on average, accuracy improves due to this collaboration.

However, this comes at the cost of making certain decision errors more and increased cognitive

effort, in particular when the prior belief (on the “good” state) is relatively weak. Consequently,

applications of machine-assisted decision-making is certainly beneficial when there is a priori suffi-

cient confidence in the good state to be identified. In this case, the machine input has a tendency

toward “confirming the rather expected,” and this provably decreases all error rates and improves

the “efficiency” of the human by reducing cognitive effort. In sharp contrast, caution is advised for

applications that involve searching and identifying a somewhat unlikely good state, especially when

the human is significantly constrained in cognitive capacity due to limited time or multitasking. In

this case, a positive indication by the machine has a strong effect of “falsifying the expected.” The

resulting increase in task difficulty not only deteriorates the efficiency of the human by inducing

more cognitive effort, but also increases her propensity to incorrectly conclude that the state is

good. Hence, human-machine collaboration may fail to provide the expected efficiency gain (and

to some extent accuracy) precisely when they are arguably most desirable.

As a final remark, this paper focuses on tasks for which human cognitive flexibility complements

machine accuracy. In particular, the machine only processes a subset of the relevant information. If

the situation is reversed and the DM’s domain knowledge, for instance, is a subset of the information

that the machine has access to, this complementarity is mute. This corresponds to tasks for which

machine predictions can substitute for and even outperform human decision-making.
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Appendix A: Proofs of Results

Proof of Lemma 1 (5) and (6) follow from Theorem 1 in Matějka and McKay (2015) which are obtained

for action a= y. A? and C? are by definition.

Proof of Theorem 1 By (4), (5) and (6), we have p= (1−µ) p

p+(1−p)e1/λ +µ pe1/λ

pe1/λ+1−p which gives

p=
µ

1− e−1/λ
− 1−µ
e1/λ− 1

.

Choice probability is 1 when p≥ 1, or equivalently, µ≥ µ= e1/λ

e1/λ+1
. Similarly, choice probability is 0 when p≤

0 or equivalently µ≤ µ= 1
e1/λ+1

. As p is linearly increasing in µ with first order derivative 1
1−e−1/λ + 1

e1/λ−1
>

0, p? is increasing in µ. Finally, µ is decreasing in λ as dµ

dλ
=− 1

λ2 e
1
λ(

e
1
λ+1

)2 < 0 and µ is increasing in λ as

dµ

dλ
= 1

λ2
e

1
λ(

e
1
λ+1

)2 > 0.

Proof of Corollary 1 µ≤ µ= 1
e1/λ+1

⇔
(

log 1−µ
µ

)−1

≤ λ which yields an a= n decision by Theorem 1.

Note that log 1−µ
µ

is positive when µ< 0.5. Similarly, µ≥ µ= e1/λ

e1/λ+1
⇔ λ≥

(
log µ

1−µ

)−1

which leads to a= y

decision and the log term is positive when µ> 0.5. Therefore, for any µ 6= 0.5, λ can be written in absolute

terms, that is, λ =
∣∣∣log 1−µ

µ

∣∣∣−1

. Then (12) follows. Furthermore, d
dλ
p? (λ) = 1

λ2
e
− 1
λ(

e
− 1
λ−1

)2 (2µ− 1) which is

positive when µ> 0.5 and negative when µ< 0.5. Hence the monotonicity result follows.



Boyacı, Canyakmaz, and de Véricourt: Human and Machine
33

Proof of Corollary 2 We can write the DM’s accuracy in (7) in terms of optimal posterior beliefs that

she constructs as

A? = (1−µ) (1− pb) +µpg = γ(b|n) (1− p?) + γ(g|y)p?

where γ(ω|a) denotes the optimal posterior that the state is ω given action a. When µ < µ, A? = 1 − µ

as p? = 0 and γ(b|n) = 1− µ. Similarly, when µ > µ, A? = µ as p? = 1 and γ(g|y) = µ. For the case where

µ ∈
[
µ,µ

]
, we use the optimal posterior characterizations that are given in Lemma 3 (in Appendix C) for

δ = 1, which yields γ(g|y) = µ = e1/λ

e1/λ+1
and γ(g|n) = µ = 1

e1/λ+1
. Note that γ(g|y) = γ(b|n) and we have

A? = µ= e1/λ

e1/λ+1
.

Using the symmetry of mutual information (see Cover and Thomas 2012), we can write (8) as

C? = λ [H (µ)− pH (γ(g|y))− (1− p)H (γ(g|n))] .

Assume that µ∈
[
µ,µ

]
. Then, as γ(g|y) = 1−γ(g|n) we have H (γ(g|y)) =H (γ(g|n)) from the symmetry of

the entropy function H in [0,1] . Then, C? becomes

C? = λ

[
H (µ)−H

(
e1/λ

e1/λ + 1

)]
= λ

[
H (µ) +

e1/λ

e1/λ + 1
log

e1/λ

e1/λ + 1
+

1

e1/λ + 1
log

1

e1/λ + 1

]
= λ

[
H (µ) +

1

λ

e1/λ

e1/λ + 1
− log

(
e1/λ + 1

)]
.

When, µ /∈
[
µ,µ

]
, C? = 0, as γ(g|y) = γ(g|n) = µ. Finally, V ? is found by taking the difference A?−C?.

Proof of Corollary 3 When µ≤ µ, pb = pg = 0, hence α? = 0 and β? = µ by (9) and (10) . Similarly, when

µ > µ, pb = pg = 1, hence α? = 1− µ and β? = 0. Now assume µ ∈
[
µ,µ

]
. Writing (9) and (10) in terms of

optimal posteriors in Lemma 3 for δ = 1 and plugging in optimal choice in (11) , we obtain

α? = (1−µ)pb = (1− γ(g|y))p=
1

e1/λ + 1

(
µ

1− e−1/λ
− 1−µ
e1/λ− 1

)
=
µ
(
e1/λ + 1

)
− 1

e2/λ− 1

β? = µ (1− pg) = γ(g|n) (1− p) =
1

e1/λ + 1

(
1− µ

1− e−1/λ
+

1−µ
e1/λ− 1

)
=
e1/λ−µ

(
e1/λ + 1

)
e2/λ− 1

.

Proof of Lemma 2 Using µ− = 0, the result follows by (11) , (17) , (18) , (13) , (14) and (15) for p?, α?, β?,

A?, C?, V ?, respectively.

Proof of Proposition 1 Accuracy A? in (13) is convex in µ for [0,1] . Then, by Jensen’s inequality,

A? (µ) =A?
((

1− µ

µ

)
µ−+

µ

µ+
µ+

)
≤
(

1− µ

µ+

)
A? (µ−) +

µ

µ+
A?
(
µ+
)

= 1− µ

µ+
+

µ

µ+
A?
(
µ+
)

=A?m (µ) .

Similarly, the value function (15) is also convex in µ. To see this, note first that V (µ) is linearly decreasing in[
0, µ
]
, convex in

[
µ,µ

]
(since the entropy functionH is concave) and linearly increasing in [µ,1] . Furthermore,

the slope of λ
[
log
(
e

1
λ + 1

)
−H (µ)

]
is the same at both of these cutoff points. More specifically,

d

dµ |µ=µ

λ
[
log
(
e

1
λ + 1

)
−H (µ)

]
= λ log

µ

1−µ |µ=µ

= λ log
1

e1/λ+1

1− 1
e1/λ+1

=−1.

Similarly, λ log µ

1−µ = 1. Since the slope is increasing in µ, V (µ) is convex in µ for µ ∈ [0,1] . By Jensen’s

inequality V ? (µ)≤ V ?
m (µ).
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Proof of Theorem 2 Note that i), ii), iii) and vi) follow by the optimal choice probability in (11) and

the fact that p?m = µ/µ+p? (µ+) .

iv) Using (11) and µ

µ+ < 1, we have

p?m =
µ

µ+

(
µ+

1− e−1/λ
− 1−µ+

e1/λ− 1

)
=

µ

1− e−1/λ
−

µ

µ+ −µ
e1/λ− 1

>
µ

1− e−1/λ
− 1−µ
e1/λ− 1

= p?

v) p?m > p
? µ

µ+ > µ

1−e−1/λ − 1−µ
e1/λ−1

which can equivalently be written as

1

e1/λ− 1
>µ+

(
1

1− e−1/λ
+

1

e1/λ− 1
− 1

µ+

)
. (23)

The right hand side is always positive since µ+ > e1/λ

e1/λ+1
. That is,

1

1− e−1/λ
+

1

e1/λ− 1
− 1

µ+
< 0⇔ µ+ >

e1/λ− 1

e1/λ + 1

which is always true since µ+ > e1/λ

e1/λ+1
. Then, (23) can be written as

µ+ <
1

e1/λ−1
1

1−e−1/λ + 1
e1/λ−1

− 1
x

=

(
e1/λ + 1− e1/λ− 1

µ+

)−1

= µ̂c.

Note that µ̂c is decreasing in µ+ and for µ+ = 1, µ̂c = 0.5. Then µ̂c ≥ 0.5.

Proof of Corollary 4 Assume µ∈
[
µ,µ

]
for a fixed λ. By Theorem 2, since µ̂c ≥ 0.5, p?m ≥ p? for µ≤ 0.5.

For µ< µ, p?m ≥ p? by i, ii and iii. This proves the first part. When µ> 0.5, p?m ≤ p? if µ≥ µ̂c for a fixed λ.

Using (19) , we have

µ≥ µ̂c⇔
1

µ
≤ e1/λ + 1− e1/λ− 1

µ+
⇔

µ+ + 1− µ+

µ

1−µ+
≥ e1/λ⇔ λ≥

(
log

µ+ + 1− µ+

µ

1−µ+

)−1

= λ∗.

Proof of Theorem 3 i), ii), iii) and vi) follow directly by the optimal error probability functions α? (µ)

and β? (µ) in (17) and (18) , respectively and the fact that α?m = µ/µ+α? (µ+) and β?m = µ/µ+β? (µ+) .

iv) Using (17), (18) and µ

µ+ < 1 we have

α?m =
µ

µ+
α?
(
µ+
)

=
µ
(
e1/λ + 1

)
− µ

µ+

e2/λ− 1
>
µ
(
e1/λ + 1

)
− 1

e2/λ− 1
= α?

and

β?m =
µ

µ+
β?
(
µ+
)

=

µ

µ+ e
1/λ−µ

(
e1/λ + 1

)
e2/λ− 1

<
e1/λ−µ

(
e1/λ + 1

)
e2/λ− 1

= β?.

v) α?m >α
? when

µ

µ+

(
1−µ+

)
>
µ
(
e1/λ + 1

)
− 1

e2/λ− 1
⇔ µ

(
1

µ+
− 1

)
>µ

1

e1/λ− 1
− 1

e2/λ− 1

⇔ µ

(
1

e1/λ− 1
− 1

µ+
+ 1

)
<

1

e2/λ− 1

⇔ µ<
1

e2/λ−1
1

e1/λ−1
− 1

µ+ + 1
=

(
e2/λ + e1/λ− e2/λ− 1

µ+

)−1

= µ̂fp.

Furthermore,

µ̂fp =

(
e2/λ + e1/λ− e2/λ− 1

µ+

)−1

<

(
e1/λ + 1− e1/λ− 1

µ+

)−1

= µ̂c

⇔ e2/λ− 1>
e2/λ− 1

µ+
− e1/λ− 1

µ+
⇔ e1/λ + 1>

e1/λ

µ+
⇔ µ+ >

e1/λ

e1/λ + 1
= µ

which is always true by assumption. For the false negative, since β? (µ+) = 0, we have β?m = 0<β?.
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Proof of Corollary 5 Solving the belief threshold µ̂fp in (20) for λ, we obtain the following two roots;

λ1 =
1

log
[

1
2

(
1

1−µ+ − 1 +
√

µ(2−µ+)2−4(1−µ+)µ+

µ(1−µ+)2

)]
λ1 =

1

log
[

1
2

(
1

1−µ+ − 1−
√

µ(2−µ+)2−4(1−µ+)µ+

µ(1−µ+)2

)]
Note that these roots are real valued when expression inside the square root is positive, that is, when µ >

4µ+ 1−µ+

(2−µ+)2
. Otherwise there are no real roots and α?m ≥ α?. Assume that this condition holds and consider

λ1. It is positive when

1

2

(
1

1−µ+
− 1−

√
µ(2−µ+)2− 4(1−µ+)µ+

µ(1−µ+)2

)
> 1⇔ 1

1−µ+
− 3>

√
µ(2−µ+)2− 4(1−µ+)µ+

µ(1−µ+)2
.

Note that first µ+ > 2/3 should hold so that the left hand side is positive. Then, it can be shown that (after

some elementary mathematical operations) µ< 1/2 should hold as well. Similarly, it can be shown that for

λ1 is positive, either when µ+ > 2/3 or when both µ+ < 2/3 and µ > 1/2 are satisfied. This means that

since µ< µ+ by default, when µ+ < 1/2, there are no positive real-valued roots, and hence α?m ≥ α?. Let us

define λfp = λ
+

1 and λfp = λ+
1 where x+ = max{0, x}. Assume µ+ > 2/3. Then when µ < 1/2, λfp = λ1 and

λfp = λ1. Taking the first order derivative of the belief threshold µ̂fp in (20) with respect to λ, we see that it

is positive when µ+− 2e1/x(1−µ+)> 0, that is, when the two roots λ1 and λ1 exist, µ̂fp is first decreasing

than increasing. Then, since α?m ≥ α? when µ≤ µ̂fp, it is true also when λ≤ λfp or λ≥ λfp. Assume now

that 1/2<µ+ < 2/3. Then, when µ< 1/2, λfp = λfp = 0, that is, α?m ≥ α? for λ> λfp. When µ> 1/2, λfp = 0

and λfp = λ1, and α?m ≥ α? for λ< λfp.

Proof of Theorem 4 i, ii, iii, v and vi correspond to cases where either DM’s prior belief µ or posterior

belief µ+ induces DM to spend no cognitive effort. In this case, total cognitive cost is zero in at last one of the

cases and the results follow. For case iv where the DM processes information in both of these cases, C?
m >C

?

when µ

µ+ (H (µ+)−ϕ (λ))>H (µ)−ϕ (λ). Note that the left hand side is a positive increasing function of µ

while the right hand side is a concave function that takes its maximum at µ= 0.5. At µ=µ, right hand side

is zero and left hand side is positive. At the other extreme when µ= µ+, both sides are equal. This means

that for µ+ ≥ 0.5, the two functions cross at a single point between
(
µ,µ+

)
. For µ+ < 0.5, both functions

are increasing. Hence, they cross only if slope of the right hand side function at µ+ is less than the slope of

the left hand side function. The slopes are equal when

H (µ+)−ϕ (λ)

µ+
= log

1−µ+

µ+
µ+⇔ µ+ = 1− e−ϕ(λ) = µ̂+

e .

Hence, for µ+ ≤ µ̂+
e < 0.5, we have C?

m ≥ C? for all µ < µ+. When µ+ ∈ (µ̂+
e , µ) , the unique threshold µ̂e

satisfies
µ̂e
µ+

(
H
(
µ+
)
−ϕ (λ)

)
=H (µ̂e)−ϕ (λ) . (24)

Furthermore, left hand side of (24) is decreasing in µ+ since

H (µ+)

µ+
=
µ+ log 1−µ+

µ+ −H (µ+)

(µ+)
2 =

µ+ log 1−µ+

µ+ +µ+ logµ+ + (1−µ+) log (1−µ+)

(µ+)
2 =

log (1−µ+)

(µ+)
2 < 0.

Therefore the crossing point that satisfies (24) and hence µ̂e is decreasing in µ+. Lastly, as the concave right

hand side function in (24) takes its maximum at 0.5, the crossing point is less than that point, i.e., µ̂e ≤ 0.5.
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Proof of Corollary 6 Assume µ+ ≥ 0.5 and µ > 1 − µ+. Then H (µ) > H (µ+) since H is symmetric

around µ= 0.5. Then

C?
m =

µ

µ+

(
H
(
µ+
)
−ϕ (λ)

)
<

µ

µ+
(H (µ)−ϕ (λ))<H (µ)−ϕ (λ) =C?.

Assume otherwise. Then C?
m >C

? if
H(µ)− µ

µ+
H(µ+)

1− µ

µ+
<ϕ (λ). We show that the left hand side is increasing in

µ. To see this take the first order derivative;

d

dµ

H (µ)− µ

µ+H (µ+)(
1− µ

µ+

) =

(
log 1−µ

µ
− H(µ+)

µ+

)(
1− µ

µ+

)
+ 1

µ+

(
H (µ)− µ

µ+H (µ+)
)

(
1− µ

µ+

)2 .

Simplifying the numerator, we have(
1− µ

µ+

)
log

1−µ
µ
− H (µ+)

µ+
+
H (µ)

µ+
=
(
µ+−µ

)
log

1−µ
µ

+H (µ)−H
(
µ+
)

=
(
µ+−µ

)
log (1−µ)−

(
µ+−µ

)
logµ−µ logµ− (1−µ) log (1−µ)−H

(
µ+
)

=−
(
1−µ+

)
log (1−µ)−µ+ logµ−H

(
µ+
)
.

This is decreasing in µ as the first order derivative is µ−µ+

1−µ < 0. Evaluating at µ= µ+ (which is the largest

possible µ) we obtain zero, that is, − (1−µ+) log (1−µ+)− µ+ logµ+ −H (µ+) = 0. This means the first

order derivative of the left hand side is positive. Note also that the right hand side is increasing in λ

with limλ→∞ϕ (λ) = log 2 while the left hand side is constant. To see this, take the first order derivative

ϕ′ (λ) = 1
λ3

e
1
λ(

e
1
λ+1

)2 > 0. Now, when µ is at its maximum, µ= µ+, we have

H (1−µ+)− µ

µ+H (µ+)

1− µ

µ+

=

(
1− µ

µ+

)
H (µ+)

1− µ

µ+

=H
(
µ+
)
<ϕ (λ) .

The maximum value entropy function H can take is log 2 and for µ< µ+, the maximum value that the left

hand side can get is less than log 2. Then this means there exists a unique λ that satisfies (22) .

Appendix B: General Payoff Structure

B.1. Normalizing the Payoffs

One can transform any general payoff matrix û(a,ω) with a∈ {y,n} and ω ∈ {g, b} by first subtracting û (n, g)

from each payoff, and then scaling each by 1/ (û (y, g)− û (n, g)) . Then, the new payoff structure becomes

u (n, g) = û (n, g)− û (n, g) = 0 u (y, g) =
û (y, g)− û (n, g)

û (y, g)− û (n, g)
= 1

u (y, b) =
û (y, b)− û (n, g)

û (y, g)− û (n, g)
= a u (n, b) =

û (n, b)− û (n, g)

û (y, g)− û (n, g)
= c.

Information cost parameter λ, should then be scaled by 1/ (u (y, g)−u (n, g)) , to arrive at an identical

behavioral structure. That is, the new information cost should be λ′ = λ
u(y,g)−u(n,g)

. The reason is that

subtracting û (n, g) from each payoff does not change the DM’s problem since the payoff differences (i.e.,

incentives) stay the same. Therefore, there is no need to change λ. However scaling each payoff by a constant

also scales the differences between them which creates a different incentive structure. To avoid this, one

needs to scale the information cost also by the same constant.



Boyacı, Canyakmaz, and de Véricourt: Human and Machine
37

B.2. Impact of Machine on DM’s Decision Errors and Cognitive Costs for General Payoffs

When DM’s incentives change, the machine’s impact on the extent of errors that the DM makes does not

structurally change. In particular, as in our baseline model, when the machine assists the DM with some

accurate information, the DM’s false negative error always decreases as it completely eliminates the possibility

of bad state in some cases. Similarly, the machine can increase the DM’s propensity to make false positive

errors in some cases. In particular, there still exists a unique threshold µ̂fp on the DM’s prior belief that

determines whether the DM makes more or fewer false positive errors with the machine. Furthermore, the

larger the net value of correctly identifying bad state δ, the larger the parameter space where the DM makes

more false positive errors with the machine. This is because the region where the DM is inclined to choose

a= y more with the machine is larger (see Figure 10). The effect of δ on DM’s propensity to make false a

positive error is illustrated in Figure 11.

0 µ µ 1

Prior belief µ

0

µ

µ

1

P
o
s
te
r
io
r
b
e
li
e
f
µ
+

δ = 0.5

µ̂fp

α⋆

m
≤ α⋆

α⋆

m
≥ α⋆

0 µ 0.5 µ 1

Prior belief µ

0

µ

0.5

µ

1

P
o
s
te
r
io
r
b
e
li
e
f
µ
+

δ = 1.5

µ̂fp

α⋆

m
≤ α⋆

α⋆

m
≥ α⋆

Figure 11 Impact of incentive structures on DM’s false positive error rate (λ= 1)

Changing incentives also has a significant effect on the amount of cognitive cost that the DM incurs. In

particular, the more at stake, the more cognitive effort the DM tolerates expending. As in our baseline case,

the machine can only increase the DM’s ex-ante effort when both her prior and posterior with the machine-

supplied information induce the DM to exert cognitive effort (i.e., µ,µ < µ+, µ). Therefore, as δ increases,

the parameter region where the DM induces the DM to exert more cognitive effort increases as the difference

µ−µ becomes larger. This is illustrated in Figure 12.

Appendix C: Invariance of Accuracy to Prior Belief

We show this property by writing the DM’s decision accuracy in terms of the optimal posteriors the DM

constructs. The following lemma gives the characterization of these posteriors in the general payoff case.
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Figure 12 Impact of incentive structures on DM’s cognitive effort (λ= 1)

Lemma 3. DMs optimal posterior beliefs when µ∈
(
µ,µ

)
are

γ (g|n) =
1− e−δ/λ

e1/λ− e−δ/λ

γ (g|y) =
1− e−δ/λ

e1/λ− e−δ/λ
e1/λ

with γ(b|y) = 1− γ(g|y) and γ(b|n) = 1− γ(g|n).

Proof We first find the optimal probability p? of choosing a= y for the general payoff case. By Theorem

1 in Matějka and McKay (2015), the DM’s conditional probability of selecting a= y given ω = g and ω = b

are respectively, Pg = pe1/λ

pe1/λ+1−p and Pb = pea/λ

pea/λ+(1−p)ec/λ = p

p+(1−p)eδ/λ . Her unconditional choice probability

p is then

p= (1−µ)
p

p+ (1− p)eδ/λ
+µ

pe1/λ

pe1/λ + 1− p
. (25)

Solving (25) yields p= µ

1−e−
1
λ
δ
− 1−µ

e
1
λ−1

. Then, similar to the baseline model, p? ≤ 0⇔ µ≤ µ= 1−e−
δ
λ

e
1
λ−e−

δ
λ

and

p? ≥ 0⇔ µ≥ µ=
e

1
λ

(
1−e−

δ
λ

)
e

1
λ−e−

δ
λ

. When µ ∈ [µ,µ], p? = p. Using Bayes’ rule, we have γ (g|y) = pgµ/p
? for the

posterior belief that the state is good given a= y. Plugging in p? and pg, we arrive at γ (g|y) . Further we have

γ (b|y) = 1− γ (g|y) . The others are found similarly; γ (g|n) = (1− pg)µ/ (1− p?) and γ (b|n) = 1− γ (g|n) .

Q.E.D.

Writing the decision accuracy in terms of optimal posteriors A (µ) = γ (b|n) (1− p?) + γ (g|y)p?, we see

that when γ (b|n) = γ (g|y) , decision accuracy A (µ) does not depend on prior belief µ. Otherwise, it depends

on µ through p?. By Lemma 3, γ (b|n) = γ (g|y) if only if

e1/λ− 1

e1/λ− e−δ/λ
=

1− e−δ/λ

e1/λ− e−δ/λ
e1/λ⇔ e−(δ−1)/λ = 1

which is only possible when δ = 1. Here note that 1 refers to u (y, g) − u (n, g), which is the gain from

making the right decision in good state. Therefore when payoff gains across states are equal (i.e., symmetric),

accuracy does not depend on prior belief µ.
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