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M any com plex system s display a surprising degree of tolerance against er—
rors. For exam ple, relatively sim ple organism s grow , persist and reproduce de-
spite drastic pham aceutical or environm ental interventions, an error tolerance
attributed to the robustness of the underlying m etabolic netw ork [!]. C om plex
com m unication netw orks ] display a surprising degree of robustness: w hile key
com ponents regularly m alfunction, local failures rarely lead to the loss of the
global inform ation-carrying ability of the network. The stability of these and
other com plex system s is often attributed to the redundant w iring of the func-
tionalweb de ned by the system s’ com ponents. In this paper we dem onstrate
that error tolerance is not shared by all redundant system s, but it is displayed
only by a class of inhom ogeneously w ired netw orks, called scale—free netw orks.
W e nd that scale—free netw orks, describing a num ber of system s, such as the
World W ide Web www) B{5], Internet [§], social networks [7] or a cell ],
display an unexpected degree of robustness, the ability of their nodes to com —
m unicate being una ected by even unrealistically high failure rates. H owever,
error tolerance com es at a high price: these netw orks are extrem ely vulnerable
to attacks, ie. to the selection and rem oval of a few nodes that play the m ost
Im portant role in assuring the netw ork’s connectivity. Such error tolerance and
attack vulnerability are generic properties of com m unication netw orks, such as
the Internet or the www, with com plex iIm plications on assuring inform ation

readiness.
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T he increasing availability oftopologicaldata on large netw orks, aided by the com puter-
ization of data acquisition, has lead to m a pr advances In our understanding of the generic
aspects of netw ork structure and developm ent Q{il§]. T he existing em piricaland theoretical
results indicate that com plex netw orks can be divided into two m a pr classes based on their
connectivity distribution P (k), giving the probability that a node in the netw ork is connected
to k othernodes. The rst class ofnetworks is characterized by a P (k) that ispeaked at an
average hki and decays exponentially for large k. The m ost Investigated exam ples of such
exponential networks are the random graph m odel of E rdds and Renyi [§/10] and the sm al-
world m odel of W atts and Strogatz [I1], both leading to a fairly hom ogeneous network, in
which each node has approxin ately the sam e num ber of Iinks, k ¥ hki. In contrast, resuls
on the worldwide web (www) B{§], Intemet [] and other large networks [17{19] ndicate
that m any system s belong to a class of lnhom ogeneous netw orks, referred to as scal—fiee
networks, for which P (k) decays as a powerdaw, ie. P (k) k , frre of a characteristic
scale. W hile the probability that a node has a very lJarge num ber of connections (k > > hki)
is practically prohibied in exponential networks, highly connected nodes are statistically
signi cant in scale-free networks (see Fig.1).

W e start by investigating the robustness of the two basic network m odels, the E rdds—
Renyi ER) m odel [,10] that produces a netw ork w ith an exponentialtail, and the scalefree
model fI1]with a power-Jaw tail. In the ER modelwe rst de ne the N nodes, and then
connect each pair ofnodes w ith probability p. T his algorithm generates a hom ogeneous net—
work (Fig.l), whose connectivity follow s a P oisson distribbution peaked at hki and decaying
exponentially fork >> hki.

T he inhom ogeneous connectivity distriboution of m any real networks is reproduced by
the scalefree model [17/1§] that incorporates two ingredients comm on to real networks:
grow th and preferential attachm ent. The m odel starts with m ( nodes. At every tinestep t
a new node is Introduced, which is connected to m of the the already existing nodes. T he

probability ; that the new node is connected to node i depends on the connectivity k; of



that node, such that ;= ki=P ;ky. For large t the connectivity distribution is a pow er-Jlaw
Pllowing P (k) = 2m ?=k>.

T he interconnectedness of a network is described by is diam eter d, de ned as the av—
erage length of the shortest paths between any two nodes In the network. The diam eter
characterizes the ability of two nodes to com m unicate w ith each other: the am aller d is, the
shorter is the expected path between them . N etworksw ith a very Jarge num ber ofnodes can
have a rather am all diam eter; for exam ple the diam eter of the www , w ith over 800 m illion
nodes P07, is around 19 B], while social networks w ith over six billion individuals are be-
lieved to have a diam eter of around six @1]. To properly com pare the two network m odels
we generated netw orks that have the sam e num ber ofnodes and Iinks such that P (k) ollow s
a Poisson distrbution for the exponential, and a power-aw for the scale-free network.

E rror to]emnoe| To address the netw orks’ error tolerance, we study the changes in the
diam eter when a am all fraction £ ofthe nodes is ram oved. The m alfunctioning (@bsence) of
a node in general ncreases the distance between the rem aining nodes, since it can elin nate
som e paths that contribute to the systam ’s interconnectedness. Indeed, for the exponential
netw ork the diam eter increases m onotonically with £  ig.2a), thus, despite its redundant
wiring Fig.l), i is Increasingly di cul for the ram aining nodes to com m unicate w ith
each other. This behavior is rooted In the hom ogeneiy of the network: since all nodes
have approxin ately the sam e num ber of links, they all contrbute equally to the network’s
diam eter, thus the ram ovalofeach node causes the sam e am ount of dam age. In contrast, we
cbserve a drastically di erent and surprising behavior for the scalefree network Fig.2a):
the diam eter rem ains unchanged under an increasing keveloferrors. Thuseven when ashigh
as 5% of the nodes fail, the com m unication between the ram aining nodes In the network is
una ected. T his robustmess of scale-free netw orks is rooted In their extram ely inhom ogeneous
connectivity distribution: since the power-law distribution in pliesthat them a prity ofnodes
have only a few links, nodes wih am all connectivity w ill be selected w ith much higher
probability, and the ram oval of these "an all" nodes does not aler the path structure ofthe

rem aining nodes, thus has no in pact on the overall netw ork topology.



Atack sur\mzabﬂlty| An inform ed agent that attem pts to delberately dam age a net—
work, such asdesigning a drug to killa bacterium , w illnot elim inate the nodes random Iy, but
w ill rather target the m ost connected nodes. To sin ulate an attack we st ram ove them ost
connected node, and continue selecting and rem oving nodes In the decreasing order of their
connectivity k. M easuring the diam eter of an exponential network under attadk, we nd
that, due to the hom ogeneity of the network, there is no substantial di erence whether the
nodes are selected random Iy or in decreasing order of connectivity F ig.2a). On the other
hand, a drastically di erent behavior is observed for scale—free networks: when the m ost
connected nodes are elin nated, the diam eter of the scale-firee network increases rapidly,
doubling its original value if 5% of the nodes are ram oved. This vuherability to attacks
is rooted in the inhom ogeneiy of the connectivity distribbution: the connectivity is ensured
by a few highly connected nodes  ig.1b), whose rem oval drastically alters the network’s
topology, and decreases the ability of the ram aining nodes to com m unicate w ith each other.

Network fragm entatjon| W hen nodes are rem oved from a network, clusters of nodes,
whose links to the system disappear, can get cut o from the main cluster. To better
understand the im pact of failures and attacks on the netw ork structure, we next investigate
this fragm entation process. W em easure the size ofthe lJargest cluster, S, shown asa fraction
of the total system size, when a fraction £ of the nodes are ram oved either random Iy or In
an attadk mode. W e nd that for the exponential network, aswe increase £, S digplays a
threshold-lke behavior such that or £ > £f./ 028 wehave S ’ 0. A sin ilar behavior is
cbserved when we m onitor the average size hsi of the isolated clusters (ie. all the clusters
exoept the largest one), nding that hsi ncreases rapidly untilhsi’ 2 at £, affterwhich it
decreases to hsi= 1. These results Indicate the ollow ng breakdown scenario Fig.4): For
an allf, only single nodes break apart, hsi’ 1,but as f increases, the size of the fragm ents
that 2llo them ain cluster increases, digplaying a sihgularbehaviorat £.. At £, the system
practically falls apart, the m ain cluster breaking into an all pieces, kading to S 7 0, and
the size of the fragm ents, hsi, peaks. A swe continue to ram ove nodes (f > f.), we fragm ent

these isolated clusters, leading to a decreasing hsi. Since the ER m odel is equivalent to the



in nite dim ensional percolation R2], the cbserved threshold behavior is qualitatively sim ilar
to the percolation critical point.

However, the reponse of a scale-free network to attacks and failures is rather di erent
Fig.3b). For random failures no threshold for fragm entation is observed, rather the size
of the largest cluster slow Iy decreases. The fact that hsi ¥ 1 formost £ indicates that
the network is de ated by nodes breaking o one by one, the Increasing error kevel kading
to the isolation of singke nodes only, not clusters of nodes. Thus, In contrast with the
catastrophic fragm entation of the exponential network at f., the scale-free network stays
together as a large cluster for very high values of £, providing additional evidence of the
topological stability of these networks under random failures. This behavior is consistent
w ith the existence of an extram ely delayed critical point F ig.3), the network &lling apart
only after the m ain cluster hasbeen com plktely de ated. O n the other hand, the response
to attadk of the scalefree network is sim ilar (out sw ifter) to the regponse to attack and
failre of the exponential network ' ig.3b): at a critical threshold chf ’ 0:18, an aller than
the value £’ 028 observed for the exponential network, the system breaks apart, form ing
m any isolated clisters Fig.4).

W hile great e orts are being m ade to design error tokrant and low yield com ponents
for com m unication system s, little is known about the e ect of the errors and attadks on
the largescale connectivity of the network. To dem onstrate the In pact of our m odelbased
studies to these systam s, next we Investigate the error and attack tolerance of tw o netw orks
of increasing econom ic and strategic in portance: the Intemet and the www .

Recently Faloutsos et al. [§] nvestigated the topological properties of the Intemet at the
router and Interdom ain level, nding that the connectivity distrioution follow s a power-law,
P k) k 2%8. Consequently, we expect that it should display the error tolerance and attack
vulherability predicted by our study. To test this, we used the latest survey of the Intemet
topology, giving the netw ork at the Interdom ain (@utonom ous system ) level. Indeed, we nd
that the diam eter of the Intemet isuna ected by the random rem ovalofashigh as25% of

the nodes (an order ofm agnitude larger than the failure rate (0:33% ) ofthe Intemet routers



'Q_E';]), while if the sam e percentage of the m ost connected nodes are elin lnated (@ttack), d
m ore than triples Fig.2b). Sin ilarly, the Jarge connected cluster persists for high rates of
random node rem oval, but ifnodes are rem oved in the attack m ode, the size ofthe fragm ents
that break o Increases rapidly, the critical point appearing at £/ 0:03 Fig.3b).

The www formm s a huge directed graph whose nodes are docum ents and edges are the
URL hyperlinks that point from one docum ent to another, its topology determ ining the
search engines’ ability to Jocate inform ation on it. Thewww isalso a scale-free network: the
probabilities P, k) and Py, (k) that a docum ent has k outgoing and Incom ing links follow a
power-aw over ssveral orders ofm agniude, ie. P k) k ,wih 3 = 21 and = 245

B/ 24]. Since no com plete topologicalm ap ofthewww isavailable, we lin ited ourstudy to a
subset ofthe web containing 325;729 nodesand 1;469; 680 links (hki= 4:59) E]. D espite the
directedness of the links, the regponse ofthe system is sim ilar to the undirected networkswe
Investigated earlier: after a slight initial increase, d ram ains constant in the case of random
failires, whik it increases for attacks (see Fig.2c). The network survives as a lJarge cluster
under high rates of failure, but the behavior of hsi indicates that under attack the system
abruptly falls apart at £ = 0:067 Fig.3c).

In summ ary, we nd that scale-free networks display a surprisingly high degree of toler-
ance agalnst random failures, a property not shared by their exponential counterparts. This
robustmess is probably the basis of the error tolerance of m any com plex system s, ranging
from cells B] to distrbuted com munication system s. It also explains why, despite frequent
router problem s P3], we rarely experience globalnetw ork outages or, despite the tem porary
unavailability ofm any webpages, our ability to surf and locate infomm ation on the web is
una ected. However, the error tolerance com es at the expense of attack survivability: the
diam eter of these netw orks increases rapidly and they break into m any isolated fragm ents
when the m ost connected nodes are targeted. Such decreased attack survivability is usefill
fordrug desion 8], but it is less encouraging for com m unication system s, such asthe Intemet
orthewww . W hile the generalw isdom isthat attacks on netw orks w ith distributed resource

m anagem ent are less successfil], our results indicate that the topological weaknesses of the



current com m unication networks, rooted in their inhom ogeneous connectivity distribution,
have serious e ects on their attack survivability, that could be exploited by those seeking to

dam age these systam s.
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FIGURES

Exponential Scale-free

FIG.1l. Visualillustration ofthe di erence between an exponential and a scale-free network.

T he exponential network a is rather hom ogeneous, ie. m ost nodes have approxin ately the sam e
num ber of links. In contrast, the scale-free network b is extrem ely inhom ogeneous: while them a—
Pprity ofthe nodeshave one ortwo links, a few nodeshave a lJarge num ber of Iinks, guaranteeing that
the system is fully connected. W e colored w ith red the ve nodesw ith the highest num ber of links,
and w ith green their rst neighbors. W hile in the exponential network only 27% of the nodes are
reached by the wvem ost connected nodes, In the scale—free netw ork m ore than 60% are, dem onstrat-
Ing the key role the connected nodesplay in the scale-free netw ork . N ote that both netw orks contain

130 nodes and 215 links (tki= 3:3). The network visualization was done using the P a gk program
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FIG .2. Changes in the diam eter of the network as a function of the fraction of the rem oved
nodes. a, Comparison between the exponential (E) and scalefree (SF) network m odels, each
containing N = 10;000 nodes and 20;000 lnks (ie. hki= 4). The blue symbols correspond to
the diam eter of the exponential (triangles) and the scale—free (squares) network when a fraction
f of the nodes are ram oved random ly (error tolerance). Red symbols show the response of the
exponential (diam onds) and the scale-free (circles) networks to attacks, when the m ost connected
nodes are ram oved. W e determ Ined the £ dependence of the diam eter for di erent system sizes
N = 1;000, 5;000, 20;000) and found that the obtained curves, apart from a logarithm ic size
correction, overlap w ith those shown in a, Indicating that the results are independent of the size
of the system . Note that the diam eter of the unperturbed (£ = 0) scale-free network is am aller
than that of the exponential netw ork, Indicating that scale-free networks use m ore e ciently the
links available to them , generating a m ore interconnected web. b, The changes in the diam eter
of the Intemet under random failures (squares) or attacks (circles). W e used the topologicalm ap
of the Intemet, containing 6;209 nodes and 12;200 links (ki = 3:4), collected by the N ational

(squares) and attack (circles) survivability ofthe world-w ideweb, m easured on a sam ple containing
325;729 nodes and 1;498;353 links B], such that hki= 4:59.
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FIG.3. Network fragm entation under random failires and attacks. The relative size of the
largest cluster S (open sym bols) and the average size of the isolated clustershsi ( lled sym bols) in
function of the fraction of rem oved nodes f forthe sam e system sasin Fig.2. The size S isde ned
as the fraction of nodes contained in the lJargest cluster (ie. S = 1 forf = 0). a, Fragm entation of
the exponential netw ork under random failires (squares) and attacks (circles). b, Fragm entation
of the scale-free netw ork under random failures (plue squares) and attacks (red circles). T he inset
show s the error tolerance curves for the whole range of £, indicating that the m ain cluster falls
apart only after it has been com pletely de ated. N ote that the behavior of the scale-free netw ork
under errors is consistent w ith an extrem ely delayed percolation transition: at unrealistically high
error rates (fy ax / 0:75) we do dbserve a very an allpeak in hsi (s, 42x1’ 1:06) even in the case of
random failures, indicating the existence of a critical point. For a and b we repeated the analysis
for system s of sizes N = 1;000, 5;000, and 20;000, nding that the obtained S and hsi curves
overlap w ith the one shown here, indicating that the overall clustering scenario and the value of
the critical point is independent of the size of the system . Fragm entation of the Intemet (c) and
www (d), using the topological data described In Fig.2. The symbols are the same as in b. Note
that hsi in d in the case ofattack isshown on a di erent scale, drawn In the right side ofthe fram e.
W hile oranallf wehave hsi’ 135, at £ = 0:067 the average fragm ent size abruptly increases,
peaking at hsy oxi’” 60, then decays rapidly. For the attack curve n d we ordered the nodes in
function of the num ber of outgoing links, kq,t. Note that while the three studied networks, the
scalefree m odel, the Intemet and the www have di erent , hki and clustering coe cient ([L1],
their regponse to attacks and errors is ddentical. Indeed, we nd that the di erence between these
quantities changes only f. and the m agniude ofd, S and hsi, but not the nature of the response
of these netw orks to perturbations.
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FIG.4. Summ ary of the regponse of a network to failures or attacks. The insets show the
clister size distrbution for various valies of £ when a scale-free network of param eters given In
Fig.3b is sub Ect to random failures (@-c) or attacks (d-f). U pper panel: Exponential netw orks
under random failuresand attadks and scale-free netw orks under attacks behave sin ilarly: for sm all
f clustersofdi erent sizesbreak down, while there is stilla large cluster. T his is supported by the
cluster size distrdbbution: whilk we see a few fragm ents of sizes between 1 and 16, there is a large
cluster of size 9;000 (the size of the original system being 10;000). At a critical f. (see Fig.3) the
netw ork breaks into am all fragm ents between sizes 1 and 100 (o) and the large cluster disappears.
At even higher £ (c) the clusters are further fragm ented into single nodes or clusters of size two.
Lower panel: Scale-free networks follow a di erent scenario under random failires: T he size of
the largest cluster decreases slow Iy as  rst single nodes, then an all clusters break o . Indeed, at
f = 005 only singke and doubk nodesbreak o (d). At £ = 0:18, when under attack the netw ork
is fragm ented (o), under failures the large cluster of size 8;000 coexists w ith isolated clusters of
size 1 through 5 (). Even for unrealistically high error rate of £ = 045 the Jarge cluster persists,
the size of the broken-o  fragm ents not exceeding 11 (f).
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