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Abstract

In this system paper, we describe the DL-Learner framework, which supports supervised machine learning using OWL and RDF for
background knowledge representation. It can be beneficial in various data and schema analysis tasks with applications in different
standard machine learning scenarios, e.g. in the life sciences, as well as Semantic Web specific applications such as ontology
learning and enrichment. Since its creation in 2007, it has become the main OWL and RDF-based software framework for supervised
structured machine learning and includes several algorithm implementations, usage examples and has applications building on top of
the framework. The article gives an overview of the framework with a focus on algorithms and use cases.
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1. Introduction

Over the past two decades, we have witnessed a transition
from an industrial driven society to a data and knowledge driven
society. This trend is accompanied by a significant increase in
research interest in and importance of (large-scale) data process-
ing methods. In this broad field, semantic technologies have
emerged as a means to structure, publish and integrate data. In
particular, the RDF and OWL knowledge representation W3C
standards are used in thousands of knowledge bases containing
billions of facts.1

A major challenge that research faces today is to analyse
this growing amount of information to obtain insights into the
underlying problems. In many cases, in particular in the life
sciences, it is beneficial to employ methods that are able to use
the complex structure of available background knowledge when
learning hypotheses. DL-Learner is an open software framework,
which contains several such methods. It has the primary goal
to serve as a platform for facilitating the implementation and
evaluation of supervised structured machine learning methods
using semantic background knowledge.

The most common scenario we consider is to have a back-
ground knowledge base in OWL and be additionally provided
with sets of individuals in our knowledge base which serve as
positive and negative examples. The goal is to find a logical for-
mula, e.g. an OWL class expression2, such that all/many of the
positive examples are instances of this expression and none/few
of the negative examples are instances of it. The primary pur-
pose of learning is to find a class expression which can classify
unseen individuals (i.e. not belonging to the examples) correctly.

1http://lodstats.aksw.org/
2http://www.w3.org/TR/owl2-syntax/#Class_

Expressions

It is also important that the obtained class expression is easy to
understand for a domain expert. We call these criteria accuracy
and readability.

As an example, consider the problem to find out whether a
chemical compound can cause cancer. In this case, the back-
ground knowledge contains information about chemical com-
pounds in general and certain concrete compounds we are inter-
ested in. The positive examples are those compounds causing
cancer, whereas the negative examples are those compounds not
causing cancer. The prediction for those examples may have
been obtained from experiments and expensive long-term re-
search trials. A learning algorithm can now derive a hypothesis
from examples and background knowledge, e.g. a learned class
expression in natural language could be “chemical compounds
containing more than three phosphorus atoms”. (Of course, in
practice the expression will be more complex to obtain a reason-
able accuracy.) Using this class expression, we can now classify
unseen chemical compounds.

To solve this and similar problems, researchers need to over-
come hurdles which are highly important for machine learning in
general: Algorithms have to process complex background knowl-
edge, possibly coming from several sources. Logical inference
is needed during the learning process to drive the algorithms.
During their runtime, algorithms frequently need to evaluate
thousands or millions of hypotheses and use the results of those
tests to determine their learning strategy. The expressions which
are eventually learned, can often be arbitrarily nested and in
some cases need to portray complex relationships while still be-
ing as easy as possible to understand for domain experts. Some
of those machine learning challenges have been identified by
leading researchers, e.g. in [1] and [2], and DL-Learner aims
to provide a platform to facilitate researchers in their quest for
solutions.
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A previous system paper on DL-Learner appeared in 2009
in the Journal of Machine Learning Research [3]. Compared to
this system description, the following major changes are:

• Framework design: The framework has been generalised
from being focused on learning OWL class expressions us-
ing OWL ontologies as background knowledge to a more
generic supervised structured machine learning frame-
work. Components are integrated via Java Beans and the
Java Spring framework, which allows more fine-grained
and more flexible interaction between them.

• New algorithms for learning SPARQL queries (as feed-
back component in question answering), fuzzy description
logic expressions, parallel OWL class expression learning,
a special purpose algorithm for the EL description logic,
two algorithms for knowledge base enrichment of almost
all OWL 2 axioms from SPARQL endpoints as well as
an algorithm combining inductive learning with natural
language processing have been integrated.

• Scalability enhancements: There are now statistical sam-
pling methods available for dealing with a large number
of examples as well as different knowledge base fragment
selection methods for handling large knowledge bases in
general.

• Major engineering changes: In 2011, the whole frame-
work was refactored to be more easily extensible. More-
over, algorithms are continuously extended with options
based on received feature requests. In the same manner,
new APIs and reasoners are continuously upgraded.

• Code repository statistics: About 3,500 commits were
made which led to more than 4,500,000 changed lines
of code. 30 new contributors could be acquired, 52 bugs
could be fixed and 27 feature requests could be realized.

The article is structured as follows: In Section 2, we give a
description of the problems DL-Learner aims to solve. Subse-
quently, in Section 3, the software framework is described. We
summarise core algorithms implemented in DL-Learner in Sec-
tion 4. Implementation statistics and notes are given in Section 5.
Use cases of DL-Learner in different problem areas are covered
in Section 6. In Section 7, we describe related work and give an
outlook in Section 8.

2. Learning Problems

The process of learning in logics, i.e. trying to find high-level
explanations for given data, is also called inductive reasoning
as opposed to inference or deductive reasoning. Deductive rea-
soning is known as the process of deriving logically certain
conclusions from a set of general statements that are known to
be true, e.g. given a statement like “Every bird can fly”, we can
deductively derive that the bird “tweety” can fly. Contrarily, the
concept of inductive reasoning is to construct general statements
from a given set of examples. For instance, given ten ravens out
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Figure 1: General learning workflow.

of which nine have a black color, one could inductively derive
that “all ravens are black” even though it does not hold for all
ravens and bears some degree of uncertainty. Learning prob-
lems which are similar to the one we will analyse, have been
investigated in Inductive Logic Programming [4].

The goal of DL-Learner is to provide a structural framework
and reusable components for solving those induction problems.
Figure 1 depicts a typical workflow from a user’s perspective.
On the left hand side, there are several knowledge bases which
together form the background knowledge for a given task. Within
that background knowledge, some resources are selected as pos-
itive and some others as negative examples. In a medical setting,
the resources could be patients reacting to a treatment (positive
examples) and patients not reacting to a treatment (negative ex-
amples). Those are then processed by a supervised machine
learning algorithm and return (in most cases in DL-Learner) a
symbolic classifier. This classifier is human readable and ex-
pressed in a logical form, e.g. as a complex description logic
concept or a SPARQL query. It serves two purposes: First,
due to its logical representation it should give insights into the
underlying problem, showing which concepts are relevant to dis-
tinguish positive and negative examples. Furthermore, the result
can also be used to classify unseen resources, e.g. by check-
ing whether they are an instance of the learned concept using
an OWL reasoner, or whether they are returned by a SPARQL
endpoint executing a learned query.

In DL-Learner, the following learning problems are relevant:

Standard Supervised Learning Let the name of the back-
ground ontology be O. The goal in this learning problem
is to find an OWL class expression C such that all/many
positive examples are instances ofC w.r.t.O and none/few
negative examples are instances of C w.r.t. O.

Positive Only Learning In case only positive examples are
available, it is desirable to find a class expression that
covers the positive examples while still generalising suffi-
ciently well (usually measured on unlabelled data).

Class Learning In class learning, you are given an existing
class A within an ontology O and want to describe it.
This is similar to the previous problem in that you can use
the instances of the class as positive examples. However,
you can make use of existing knowledge about A in the
ontology and (obviously) A itself should not be a solution.
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Figure 2: Overview of core DL-Learner components.

In addition, there are different nuances of the above learning
problems which depend on how negative knowledge should be
treated (related to the open world assumption in description
logics): The problems can be treated as a binary problem (hy-
potheses should cover positive examples and not cover negative
examples) or a ternary problem (hypotheses should cover posi-
tive examples, cover the negation of negative examples and not
cover all other resources). The preferable setting partially de-
pends on the structure of the background knowledge. For ternary
learning problems, more sophisticated schema axioms, e.g. con-
taining negation, disjunction or certain property restrictions, are
required to obtain useful results. DL-Learner implements stan-
dard binary measures, e.g. predictive accuracy, F-measure, and
all ternary measures described in [5]. Obviously, in most cases,
we will not find a perfect solution to the learning problem, but
rather an approximation, the degree of which is managed by set-
ting suitable thresholds representing the tolerance to noise/errors,
i.e. the fraction of uncovered positive resp. covered negative
examples.

3. Overview of the Framework

The DL-Learner framework provides means to flexibly build
concept learning algorithms. Several (Java) interfaces, adapters
and external API connectors are part of the implementation.
Figure 2 shows the main parts of this structure:

1. Knowledge sources specify where and how to retrieve
data. Currently, most RDF and OWL serialisation formats
are supported. Data can be retrieved locally or remotely.
Retrieving data from SPARQL endpoints is also supported,
including various options to extract fragments, filter and
pre-process data [6] as well as several retrieval strategies
differing in performance. A single learning problem can
have multiple knowledge sources including mixtures of
different types of sources.

2. Reasoners perform inference over knowledge sources.
DL-Learner supports connecting reasoners via the OWL

API, OWLlink as well as direct access to e.g. Pellet if
advanced features not covered in the standard interfaces
are needed. DL-Learner also implements own approxi-
mative reasoners (not sound and/or incomplete) for high
performance hypothesis testing. Note that learning algo-
rithms are not required to use reasoning, i.e. can also work
only on the asserted knowledge, but indeed can benefit
from inferred knowledge – there is a trade-off between
computational complexity and expressivity.

3. Learning problems define the task to solve (see Sec. 2).
Learning problems are typically used by learning algo-
rithms for hypothesis testing. DL-Learner provides statis-
tical sampling methods which allow efficient hypothesis
testing even in the presence of a high number of exam-
ples [7]. Those methods approximate objective functions,
such as F-measure, by iteratively sampling from the given
examples until the confidence interval around the approxi-
mated objective function value is sufficiently small.

4. Refinement Operators are used to traverse through the
space of possible hypotheses. DL-Learner implements a
set of refinement operators, which can be configured to-
wards particular fragments of OWL as well as an efficient
operator for the EL language specifically.

5. Learning algorithms implement the core learning strategy.
In the next section, we will summarise currently imple-
mented algorithms and briefly point out how contributors
can add further algorithms in Section 5.

4. Learning Algorithms

In early work, we provided theoretical foundations for the
field on top of which we developed algorithms derived from
Inductive Logic Programming and genetic programming [8].
This was extended to very expressive schemata [9] and learning
problems with a lot of instance data [6]. Later, we extended the
theoretical and algorithmic foundations for a) learning complex
definitions in ontologies [7], b) generic schema enrichment [10,
11], c) fuzzy description logics [12], d) the light-weight EL-
description logic [13] and e) combinations of natural language
processing and concept learning [14]. We will briefly describe
the algorithms resulting from those lines of research.

Refinement Operator Algorithms
The first category of algorithms is based on so-called refine-

ment operators. The design of those algorithms is motivated by
the fact that, generally, learning can be seen as the search for a
correct concept definition in an ordered space (Σ,�). In such a
setting, one can define suitable operators to traverse the search
space.

Definition 1 (refinement operator). Given a quasi-ordered3

search space (Σ,�)

• a downward refinement operator is a mapping ρ : Σ→ 2Σ

such that ∀α ∈ Σ ρ(α) ⊆ {β ∈ Σ | β � α}

3A quasi-ordering is a reflexive and transitive relation.
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Figure 3: Search tree used in OCEL and CELOE algorithm.

• an upward refinement operator is a mapping δ : Σ→ 2Σ

such that ∀α ∈ Σ δ(α) ⊆ {β ∈ Σ | α � β}

Intuitively, a downward (resp. upward) refinement operator
returns a set of more specific (resp. general) concepts. The goal
is often to devise operators that have many useful properties like
finiteness, non-redundancy, properness and completeness while
still allowing to efficiently traverse throughout the search space
in pursuit of good hypotheses. However, there are theoretical
limitations on what properties can be combined for more ex-
pressive description logics [9], e.g. it is possible to design an
operator that is finite and complete but there exists no operator
that is finite, proper and complete. This is not a problem at
all because some of the missing properties of an operator can
be handled algorithmically, i.e. we are able to workaround for
instance infinity and redundancy.

OCEL (OWL Class Expression Learner) was initially de-
vised for learning in the description logic ALC, but was later
extended to cover other parts of OWL as well, e.g. nominals.
The general idea is to use a proper and complete refinement op-
erator to build a search tree while using heuristics which control
how the search tree is traversed. The algorithm uses techniques
to cope with redundancy and infinity, in particular, infinity is
handled by the ability to revisit nodes in the search tree several
times and perform incremental applications of the refinement op-
erator. Figure 3 visualises a search tree of OCEL, starting from
the most general concept owl:Thing as the root node to more
specific concepts like Person or Person that attends
some talk. Nodes are annotated with their score and the
number of times they have been expanded (denoted by the HE
value). Some nodes are too weak to eventually lead to compet-
itive learning problem solutions, i.e. the number of uncovered
positive examples is above a given threshold. They are never
visited, which allows the algorithm to ignore those parts of the
search space resulting in improved efficiency.

CELOE (Class Expression Learning for Ontology Engineer-
ing) [7] is an evolution of OCEL, which contains adaptions
specific for the class learning problem. One of the main mod-
ifications is a different heuristic which is more biased towards
short concepts. Those are more likely to be relevant in the on-
tology creation and maintenance scenarios as the expressions
created and maintained by humans are often simpler than those

required for complex prediction tasks.
ELTL (EL Tree Learner) is an algorithm optimized for learn-

ing EL trees using a refinement operator [13] designed for the
OWL EL profile. This operator has been proven to be ideal,
i.e. finite, proper and complete. One particular feature of the de-
veloped operator is that it integrates EL reasoning via so called
simulations, which makes the generation of refinements very
efficient.

The ISLE (Inductive Statistical Learning of Expressions)
approach [14] is an extension of the ELTL algorithm, which can
take textual evidence into account in addition to structural back-
ground knowledge. It is particularly optimised for the ontology
learning use cases and assumes that the classes of the ontology to
construct are described in a text corpus. The information in the
corpus is used to modify the search heuristic resulting in learned
expressions which are usually not more accurate with respect
to available background knowledge, but have been shown to be
more accurate in manual human evaluation.

OWL Schema Learning Algorithms
Another group of algorithms aims at generating OWL ax-

ioms which can be used to enrich or revise the existing schema
of a knowledge base by analysing the instance data [10]. This
process can be applied to all types of OWL schema entities,
i.e. not only to classes but also to object and data properties. In
particular, this means that we do not only support the generation
of axioms regarding the class hierarchy, e.g. “every employee
is a person”, but also allow for computing the domain or range
of a property, whether it should be declared as functional, tran-
sitive etc. As an example, the algorithms may suggest that
the property birthDate has the domain Person and the
range xsd:date, and moreover is supposed to be functional,
i.e. there is only one birth date for each person. The general
workflow of schema enrichment is visualised in Figure 4. More
details will be given in Sec. 6.2.

In addition to the basic axiom types of OWL, which can be
semi-automatically added to the knowledge base, DL-Learner
also support more complex axiom patterns [11]. Instead of
learning general expressions, this technique is tailored to a suite
of axiom types which have been determined to be relevant by
analysing a large corpus of ontologies on the web (upper part of
Figure 4). After retrieving the general schema information, those
patterns are used in SPARQL-based pattern detection algorithms,
which can be executed over large datasets stored in SPARQL
endpoints (lower part of Figure 4). On top of the data retrieved
by those patterns, different scoring algorithms can be applied to
compute confidence values and rank suggestions. The approach
optionally allows to perform schema reasoning, but does not
load instance data into the reasoner for efficiency reasons. While
this approach lacks generality, it is scalable and based on real
schema usage patterns. This renders the approach a suitable
algorithm candidate for ontology learning.

Other Algorithms
In addition to the previously shown algorithms, DL-Learner

contains algorithms that have been inspired by different tech-
nologies resp. use cases:
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Figure 4: The general workflow of knowledge base enrichment and its pattern based extension: Frequent axiom patterns in various ontology portals are detected and
converted into SPARQL query patterns (upper part). Those are then applied to other datasets to enrich them with further axioms (lower part).

QTL is an algorithm that makes use of so-called query trees,
which is intuitively a tree-like representation of information
about a particular individual. For example, a query tree repre-
senting the German city Leipzig could be

Leipzig

Saxony

Germany

locatedIn

Dresden

capital

federalState

539 348

population

SPD

leaderParty

and for Berlin, the German capital, it might be
Berlin

Berlin

Germany

locatedIn

federalState

3 415 091

population

SPD

leaderParty

Based on those input trees, the least general generalization
(LGG) is computed, i.e. the most specific query tree that sub-
sumes all positive examples will be returned. For the example
above, the LGG could be represented by the query tree below,
which can be roughly described as “German cities lead by SPD
and having at least 539 348 inhabitants”.

?

?

Germany

locatedIn

federalState

≥539 348

population

SPD

leaderParty

The negative examples are used for generalisation of this

input tree in the QTL algorithm.
Finally, the tree or its corresponding SPARQL query will be

returned:
SELECT DISTINCT ?s WHERE {
?s ont:leaderParty :SPD .
?s ont:federalState ?o1 .
?o1 ont:locatedIn :Germany .
?s ont:population ?o2 .
FILTER(?o2 >= 539348) }

PARCEL, the parallel class expression learning algorithm [15]
aims at computing partial definitions of a learning problem,
which are then aggregated to complete solutions. This approach
lends itself naturally to parallelization and has been applied in an
abnormality detection usage scenario in smart homes, in which
e.g. the learned result for the concept normal showering
is the disjunction of the partial definitions like
1. activityHasDuration some (hasDurationValue some

double[>= 4.5] and hasDurationValue some double
[<= 15.5])

2. activityHasDuration some (hasDurationValue some
double [>= 15.5] and hasDurationValue some
double[<= 19.5]) and activityHasStarttime some
{Spring}

Fuzzy DLL [12] is an algorithm that is targeted at vague
and imprecise domains. While building on CELOE, it uses a
fuzzy description logic reasoner and can optimise towards fuzzy
objective functions.

Influenced by the field of Genetic Programming, DL-Learner
contains algorithms using evolutionarily inspired methods for
concept learning. Those algorithms [8] introduce new genetic
operators to make better use of background knowledge than
standard operators. Although those algorithms are meanwhile
usually outperformed by newer approaches, they can still be in-
teresting in case there are not many schema restrictions (e.g. dis-
junctions, domain and range restrictions) as those are better
exploited by CELOE and OCEL.
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5. Implementation

DL-Learner is developed under the GPL 3 license and pri-
marily written in Java. The project was started in 2007 and
had 30 developers contributing since then with 4 researchers
in the core development team currently. 4400 commits were
contributed to the project over the past 7 years resulting in ap-
proximately 86 thousand lines of Java code excluding comments,
empty lines and import statements. The release contains around
20 example machine learning tasks with 30 more experimental
or larger-scale tasks contained in the project repository4 (more
than 150 if all variations are counted).

DL-Learner provides two command line scripts: One for
the general execution of configuration files, which can solve
standard machine learning tasks, and one tailored to knowledge
base enrichment (as explained in Section 6.2). Moreover, it is
possible to apply n-fold cross-validation by just adding one line
to the config file, thus allowing for easy to use model validation
for arbitrary learning tasks provided by DL-Learner. In addition,
it is possible to set different fitness functions like F-measure or
predictive accuracy, which allows learning algorithms to opti-
mise for different criteria. The command line interface reads
in configuration files, which are internally processed using the
Spring Java Framework5, and allow to configure almost arbitrary
workflows as the code follows Java Beans conventions.

Another means to access DL-Learner, in particular for ontol-
ogy engineering, is to use the Protégé plugin6 (cf. Section 6.4).
The plugin can suggest axioms to add to a knowledge base inside
of the popular Protégé ontology editor.

Extending DL-Learner. DL-Learner is designed as a framework
that is easily extensible allowing to add new custom components.
As an example, to develop a new learning algorithm one has
to implement the class expression learning algorithm (CELA)
interface which means that certain methods to initialize, start
and stop the algorithm have to be written, as well as methods to
retrieve the best learned class expression. One simple example
of the main actions performed by the start method could be
to build up a certain set of complex concept expressions and
exhaustively evaluate them with regards to an existing objective
function (score) implemented in DL-Learner. This score of a
concept expression depends on the actual problem to solve and
is thus implemented in the applied learning problem. Using
the framework has the advantage of reducing development time
and it can be integrated into the command line interface almost
effortlessly (just calling one method to register it).

In the same fashion, the framework can also be extended by
new refinement operators which require to implement an initial-
ization and refine method. The refine method takes a concept
expression and dynamically derives a set of new expressions. Do-
ing all the wiring and providing clear interfaces the DL-Learner
framework allows extension developers to concentrate on their
components and further eases an overall customization to solve

4https://github.com/AKSW/DL-Learner
5http://projects.spring.io/spring-framework/
6http://dl-learner.org/community/protege-plugin/

dedicated learning tasks. By implementing the interfaces, algo-
rithms can also readily be evaluated against all learning tasks
provided in the framework.

6. Use Cases

6.1. Application to Life-Science Problems

In first experiments applying the concept learning approach
to the life science domain, the DL-Learner was used to find de-
scriptions of chemicals that might cause cancer. There have been
several approaches by both – human and machines – to predict
carcinogenicity. It has been shown in [16] that the performance
of machine derived models for carcinogenicity can be equal to
human experts. Classifying chemicals is a massive challenge,
due to the high number and diversity of elements, structures,
and tests involved in the problem. To provide experimental
data, the U.S. National Toxicology Program (NTP) makes a
set of more than 300 tested compounds available for training
by Machine Learning tools. For each compound, the chemi-
cal structure, structural indicators, and the results of short-term
assays were made available. In this carcinogenesis prediction
task background knowledge about chemical compounds and
existing results of already tested chemicals were used to derive
complex descriptions of the cancer-causing characteristics. In
a first step the original data7, available in a Prolog-like syntax,
was converted into an OWL ontology. To do this, we extended
DL-Learner with a Prolog parser and wrote a mapping script
to convert the carcinogenesis files into OWL. It is sometimes
impossible and often not trivial to convert between both rep-
resentations. For carcinogenesis such a mapping is possible,
but required at least a superficial understanding of the domain.
The mapping script we used and the resulting ontology are both
freely available at the DL-Learner use-case description page.8

During the transformation process almost no knowledge was
lost or added. The resulting ontology contains 142 classes, 19
properties, 22 373 instances, and more than 74 000 facts, e.g.
information about atoms like Gallium or Hydrogen, chemical
structures like Halide or Methanol, and relates compounds to
such structures or to its charge value. In the experiments, we
run DL-Learner’s OCEL algorithm with different settings and
achieved a maximum cross validation accuracy of 67.4%, which
outperformed other state-of-the-art approaches (cf. Table 1).

As an example, the following definition was obtained when
using DL-Learner over the full training set (72% accuracy, for
easier readability negation is moved further out if possible):
Compound and
not hasAtom some (Nitrogen-35 or Phosphorus-60 or

Phosphorus-61 or Titanium-134)
and (min 3 hasStructure (Halide and not Halide10)

or (amesTestPositive = true and min 5 hasBond (
not Bond-7)))

This can be phrased in natural language as follows:

7http://web2.comlab.ox.ac.uk/oucl/research/areas/
machlearn/cancer.html

8http://dl-learner.org/community/carcinogenesis/
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Table 1: Overview of the accuracy on carcinogenesis prediction achieved by
different approaches using the same background knowledge

Approach Accuracy
(Std. Dev.)

Reference

DL-Learner (OCEL algorithm) 67.4% (±7.9%)
Aleph with Ensembles 59.0% to 64.5% [17]
Boosted Weak ILP 61.1% [18]
Weak ILP 58.7% [18]
Aleph Deterministic Top-Down 0.7 57.9% (±9.8%) [19]
Aleph Randomized Rapid Restarts 0.9 57.6% (±6.4%) [19]
Aleph Deterministic Top-Down 0.9 56.2% (±9.0%) [19]
Aleph Randomized Rapid Restarts 0.7 54.8% (±9.0%) [19]

“A chemical compound is carcinogenic iff it does not contain a
Nitrogen-35, Phosphorus-60, Phosphorus-61, or Titanium-134
atom and it has at least three Halide – excluding Halide10 –
structures or the ames test of the compound is positive and there
are at least five atom bonds which are not of bond type 7.”

The whole experimental setup as well as other experiments can
be found in [9](cf. Sec. 7.2 and following).

In a further use case that is currently developed, the con-
cept learning approach is applied to the prevalent gene and
biomedical databases. Algorithms in DL-Learner are used to
find descriptions for insulitis-related diseases based on back-
ground knowledge containing information about genes, gene
functions and phenotypes. As a side effect, this use case is
exploring scalability limits of all tools involved in the frame-
work including reasoners. As a future direction the outcome
of these investigations could be used for automated hypothesis
generation or the extraction of new classifiers from biomedical
knowledge bases. By exploiting large ontological background
knowledge, the approaches may achieve more accurate and/or
readable hypotheses for a number of frequent diseases.

6.2. Knowledge Base Enrichment
A standard use case for the learning algorithms contained

in DL-Learner is knowledge base enrichment, i.e. the semi-
automation of schemata creation and revision based on the
available instance data. The combination of instance data and
schemata allows improved querying, inference and consistency
checking. As an example, consider a knowledge base containing
a property birthPlace and subjects in triples of this prop-
erty, e.g. Brad Pitt, Angela Merkel, Albert Einstein, etc. Our
enrichment algorithms could, then, suggest that the property
birthPlace may be functional and has the domain Person
as it is encoded via the following axioms in Manchester OWL
syntax9:
ObjectProperty: birthPlace

Characteristics: Functional
Domain: Person
Range: Place
SubPropertyOf: hasBeenAt

Adding such axioms to a knowledge base can have several
benefits: 1.) The axioms serve as documentation for the purpose

9For details on Manchester OWL syntax (e.g. used in Protégé, OntoWiki)
see http://www.w3.org/TR/owl2-manchester-syntax/.

and correct usage of schema elements. 2.) They improve the
application of schema debugging techniques. For instance, after
adding the above axioms the knowledge base would become
inconsistent if a person has two different birth places (explicitly
stated to be not the same) due to the functionality axiom. Specifi-
cally for the DBpedia knowledge base we observed an erroneous
statement asserting that a person was born in Lacrosse, the game,
instead of Lacrosse, the city in the United States. Such errors can
be automatically detected when schema information such as the
range restriction is present (assuming disjointness of the classes
Place and Game). 3.) Additional implicit information can be
inferred. As an example in the above case it can be inferred that
the birth place of a person is one of the places she stayed at. The
main purpose of our research is to reduce the effort of creating
and maintaining such schema information.

We have shown in [10] that the whole enrichment process
can be described as illustrated in the lower part of Figure 4 and
also be applied to large scale knowledge bases accessible via
SPARQL. The general workflow proceeds in three steps:

1. In the optional first step, SPARQL queries are used to
obtain existing information about the schema of the know-
ledge base. In particular we retrieve axioms which allow
to construct the class hierarchy. It can be configured
whether to use an OWL reasoner for inferencing over the
schema or just taking explicit knowledge into account.10

Naturally, the schema only needs to be obtained once per
knowledge base and can then be re-used by all algorithms
and all entities in subsequent steps.

2. The second step consists of obtaining data via SPARQL
which is relevant for learning the considered axiom. This
results in a set of axiom candidates, configured via a
threshold.

3. In the third step, the score of axiom candidates is com-
puted and the results are returned.

In [11], patterns for frequent axioms are mined from more
than one thousand ontologies and then used to learn on the
DBpedia dataset. As one would expected, the most frequent
axiom pattern was A SubClassOf B, but in the top 15 we found
also patterns like
A SubClassOf p some (q some B)
A EquivalentTo B and p some C
A SubClassOf p value a

Those patterns have been applied to search for promising instan-
tiations on DBpedia and resulted in axioms like
Song EquivalentTo MusicalWork and (artist some

Agent) and (writer some Artist)
or
Conifer SubClassOf order value Pinales

A manual evaluation with non-author experts judging the 2154
proposed axioms showed that 48.2% of these axioms were useful
for extending the knowledge base. This shows promise, but also
clearly indicates that a human expert is required in loop to ensure
high quality.

10Note that the OWL reasoner only loads the schema of the knowledge base
and, therefore, this option worked even in case with several hundred thousand
classes in our experiments using the HermiT reasoner.
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6.3. Knowledge Base Repair

While the number and size of datasets in the Semantic Web
are increasing, there is also a risk for introducing modelling
problems, e.g. because of data extraction errors or a misunder-
standing and misuse of particular types of constructs in the
ontology languages. Typical problems express themselves in
inconsistencies or unsatisfiable classes. An inconsistency, in
simple terms, is a logical contradiction in the knowledge base,
which makes it impossible to derive any meaningful information
by applying standard OWL reasoning techniques.11 Unsatisfi-
able classes usually are a fundamental modelling error in that
they cannot be used to characterize any individual.

Therefore, an application of DL-Learner that is directly ac-
companied with the enrichment use case (cf. Sec. 6.2) is ontol-
ogy repair, i.e. detecting and fixing those problems. A core prob-
lem is usually that existing datasets are not expressive enough to
apply ontology repair algorithms directly, which makes it inter-
esting to apply knowledge base enrichment as a pre-processing
step. While the enrichment process introduces uncertainty due
to its machine learning nature, it frequently allows to detect
a much wider range of problems. There are at least two tools
which use DL-Learner as a library for ontology repair: ORE [20]
and RDFUnit [21]. While ORE allows user feedback in a semi-
automatic fashion, RDFUnit performs the process automatically
but annotates axioms with confidence values from DL-Learner.

Another dimension of knowledge base repair can be achieved
on the instance data level. Often, when DL-Learner algorithms
suggest a possible axiom to add to the knowledge base, not all
resources in the background knowledge fit that suggestion. Thus,
one can directly report those instances (which are frequently
corner-cases) to the user such that she can align the data, e.g.
add missing data or correct existing data if possible.

6.4. Providing Suggestions in Ontology Editors

Together with the Protégé developers, we extended the Pro-
tégé 4/5 plugin mechanism to be able to seamlessly integrate
the DL-Learner plugin as an additional method to create class
expressions. This means that the knowledge engineer can use
the algorithm exactly where it is needed without any additional
configuration steps. The plugin has also become part of the
official Protégé repository, i.e. it can be directly installed from
within Protégé.

A screenshot of the plugin is shown in Figure 5. To use the
plugin, the knowledge engineer is only required to press a button,
which then starts the learning algorithm and during runtime
periodically updates the list of suggested class expressions. For
each suggestion, the plugin displays its accuracy.

When clicking on a suggestion, it is visualized by displaying
two circles: One stands for the instances of the class to describe
and another circle for the instances of the suggested class expres-
sion. Ideally, both circles overlap completely, but in practice this
will often not be the case. Clicking on the plus symbol in each

11There are indeed approaches that do some kind of approximate reasoning to
infer useful information from an inconsistent ontology.

12SWORE Ontology: http://ns.softwiki.de/req/

Figure 5: Screenshot of the DL-Learner Protégé plugin. Equivalent class expres-
sions for the class Customer Requirement contained in the SWORE ontology
v1.012have been generated and the best one Requirement and isCreatedBy some
Customer was selected showing no potential conflicts.

circle shows its list of individuals. Those individuals are also pre-
sented as points in the circles and moving the mouse over such
a point shows information about the respective individual. Red
points show potential problems detected by the plugin. Please
note that we use closed world reasoning to detect those problems.
If there is not only a potential problem, but adding the expres-
sion would render the ontology inconsistent, the suggestion is
marked red and a warning message is displayed.

Accepting such a suggestion can still be a good choice, be-
cause the problem often lies elsewhere in the knowledge base,
but was not obvious before, since the ontology was not suffi-
ciently expressive for reasoners to detect it. This is illustrated
in a screencast available on the plugin homepage13, where the
ontology becomes inconsistent after adding an axiom, and the
real source of the problem is fixed afterwards. Being able to
make such suggestions can be seen as a strength of the plugin.

The plugin allows the knowledge engineer to change ex-
pert settings. Those settings include the maximum suggestion
search time, the number of results returned and settings related
to the desired target language, e.g. the knowledge engineer can
choose to stay within the OWL 2 EL profile or enable/disable
certain class expression constructors. The learning algorithm is
designed to be able to handle noisy data and the visualisation of
the suggestions will reveal false class assignments so that they
can be fixed afterwards.

We also plan to integrate the DL-Learner into WebProtégé14

as it has full reasoning support. One use case related to this is
that the DBpedia Association currently plans to adopt WebPro-
tégé for maintaining the DBpedia ontology. DL-Learner in this

13http://dl-learner.org/community/protege-plugin/
14http://webprotege.stanford.edu/
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context would then serve as a component suggesting ontology
extensions to all ontology maintainers for manual approval.

6.5. Knowledge Exploration
Typically, querying an RDF knowledge base via SPARQL

queries is not considered an end user task as it requires familiar-
ity with its syntax and the structure of the underlying knowledge
base. For this reason, query interfaces are often tight to a specific
knowledge base. More flexible techniques include facet based
browsing, graphical query builders and Question Answering
(QA) systems. We integrated the QTL algorithm (cf. Sec. 4)
into the AutoSPARQL user interface [22]. It provides an alterna-
tive to the above interfaces with a different set of strengths and
restrictions. AutoSPARQL uses active supervised machine learn-
ing to generate a SPARQL query based on positive examples,
i.e. resources which should be in the result set of the SPARQL
query, and negative examples, i.e. resources which should not
be in the result set of the query. The user can either start with a
question as in other QA systems or by directly searching for a
relevant resource, e.g. “Rome”. He then selects an appropriate
result, which becomes the first positive example. After that, he is
asked a series of questions on whether a resource, e.g. “London”,
should also be contained in the result set. These questions are
answered by “yes” or “no”. This feedback allows the supervised
learning method to gradually learn which query the user is likely
to be interested in. After each question is answered, QTL is
invoked again, i.e. a new SPARQL query which returns all pos-
itive examples and none of the negative examples is returned.
The user can always observe the result of the currently learned
query and stop answering questions if the algorithm has cor-
rectly learned it. The system can also inform the user if there is
no learnable query, which does not contradict with the selection
of positive and negative examples. Overall, AutoSPARQL can
generate more complex queries than facet-based browsers and
most knowledge base specific applications, while still being eas-
ier to use than manual or visual SPARQL query builders and not
much more difficult to use than facet-based browsers or standard
QA systems.

6.6. Applications in other Domains
Besides the major use cases shown before, DL-Learner was

also used by the community to solve interesting problems in
other domains. We roughly describe two of them and refer the
interested reader to the corresponding publications.

In [23], DL-Learner was used for sentiment analysis, a re-
search area that analyses people’s opinions or sentiments about
e.g. products, services, individuals, events, etc. The idea is to
pick some documents that reflect a positive opinion, annotate
and translate those into OWL axioms by a novel vocabulary for
texts, and finally apply the DL-Learner to learn class expressions
that describe documents with a positive opinion.

[24] describes another application of the DL-Learner within
the AORTA project15, in which one of the primary goals is the
optimization of the transportation workflow of patients as well

15https://www.iminds.be/en/projects/aorta

as equipment in hospitals, which can drastically reduce costs.
Given an ontology based on real-world datasets from hospitals
describing all transport and related information over a longer
timespan of several moths, first some semantic clustering is used
to partition the data, and then on each partition, the DL-Learner
is applied to learn rules. For instance, one explanation for why a
transport is late might be
LateTransport EquivalentTo hasRoute some (

hasSegment some
{BusyElevator})

Those rules can then be taken into account when planning new
transports.

7. Related Work

7.1. Inductive Learning

The goal of inductive learning approaches is to infer general
principles from specific facts or instances usually considering
some kind of background knowledge. Several systems using
different techniques have been developed, for example Progol16,
Golem17 and many others [2]. Those learning systems have been
applied in several scenarios, e.g. learning drug structure activity
rules, natural language processing, protein interaction [25, 26]
or the detection of traffic problems. Overall, inductive reasoning
is a rich and diverse research area with several applications, in
particular those where rich structural knowledge is available.

Despite the relative success of inductive reasoning in some
fields, there are also some open issues. One practical problem
is to make results of ILP programs more readable and under-
standable for their users. This became evident for instance at
the Predictive Toxicology Challenge18 where different ILP pro-
grams could obtain promising results [27, 28, 29], however, they
turned out to be hard to understand by domain experts. Another
problem is scalability. Clearly, one issue in research and practice
in ILP is its scalability to large datasets [30]. One challenge
is the size of the hypothesis space, in particular for expressive
languages.

7.2. Concept Learning in the Semantic Web

Whereas early approaches of applying machine learning tech-
niques to Description Logics focused on the Probably Approx-
imately Correct (PAC) [31] learnability of concept description
languages later several supervised and unsupervised methods
arose. One example of an unsupervised learning approach is
the KLUSTER [32] algorithm which applies induction tasks to
DL languages. Other than the DL-Learner framework, this al-
gorithm is designed for general terminology induction and does
not cover the tasks introduced in Section 2. Further research was
done on operator-based techniques working on Description Log-
ics [33, 34, 35, 36] which follow the idea of generalization as
search [37]. These influenced the refinement operators available

16http://www.doc.ic.ac.uk/~shm/progol.html
17http://www.doc.ic.ac.uk/~shm/Software/golem/
18http://www.comlab.ox.ac.uk/activities/

machinelearning/PTE/
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in the DL-Learner framework as described in [9]. Besides the
DL-Learner framework, the YINYANG system [36] is another
example of an implementation supporting concept learning on
description logics. However, YINYANG focused on learning
ALC concepts and its algorithms tend to produce very long and
hard-to-understand class expressions.

Another option for concept induction is offered by learning
with logical decision trees [38] which were extended to support
more expressive logical representations in clausal form [39].
With terminological decision trees [40] a model was introduced
that allows the nodes of a logical decision tree to be terminolog-
ical concept descriptions. The DL-Learner framework provides
different implementations to learn with decision trees. Further-
more, DL-FOIL [41], a new version of the FOIL algorithm [42]
was proposed which was adapted to learn concept descriptions
supporting the OWL DL profile. The actual evaluation strat-
egy of concept candidates in DL-FOIL differs from the ideas
presented in Section 2 since it follows the information gain ap-
proach of the FOIL algorithm. Another algorithm that derives
from FOIL is FOIL-DL [43] which adapts the refinement strat-
egy and information gain calculation to learn fuzzy general class
inclusion axioms from crisp DL knowledge bases.

8. Future Work

In future work, we target several advances related to hori-
zontal scalability of the algorithms in DL-Learner. In particular,
we will investigate algorithms for distributing the underlying
data on several nodes of a cluster as well as distributing the
hypothesis search via a master-slave mechanism on supercom-
puters. Within funded projects, DL-Learner will be evaluated in
use cases related to IT monitoring, manufacturing workflows as
well as compressor systems. For the application of DL-Learner
in life science scenarios, we will research methods suitable for
handling large schemata, i.e. those with many thousand classes
and demanding requirements in terms of reasoning.
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