Annotated RDF*

Octavian Udrea, Diego Reforgiato Recupero, and V.S. Subrahmanian

University of Maryland, College Park MD 20742, USA

{udrea, diegoref, vs}@cs.umd.edu

Abstract. There are numerous extensions of RDF that support tem-
poral reasoning, reasoning about pedigree, reasoning about uncertainty,
and so on. In this paper, we present Annotated RDF (or aRDF for short)
in which RDF triples are annotated by members of a partially ordered
set (with bottom element) that can be selected in any way desired by the
user. We present a formal declarative semantics (model theory) for anno-
tated RDF and develop algorithms to check consistency of aRDF theories
and to answer queries to aRDF theories. We show that annotated RDF
captures versions of all the forms of reasoning mentioned above within a
single unified framework. We develop a prototype aRDF implementation
and show that our algorithms work very fast indeed - in fact, in just a
matter of seconds for theories with over 100,000 nodes.

1 Introduction

Since the adoption of “Resource Description Framework” (RDF) as a web rec-
ommendation by the W3C, there has been growing interest in using RDF for
knowledge representation [I[2,[3L4]. Extensions to RDF have included temporal
extensions [5], fuzzy extensions [6][7], provenance management methods [2], and
others.

In this paper, we propose an extension of RDF called Annotated RDF (or
aRDF for short) that builds upon annotated logic [8,[9] which has been subse-
quently used, extended and improved [10] for a wide range of knowledge rep-
resentation tasks. In aRDF, you can start with any partially ordered set that
you like as long as it has has a bottom elementl]. A could capture fuzzy or
possibilistic values [2L[7] or timestamps [5] or - as we shall show - pedigree in-
formation or temporal-fuzzy information, and so on. We present a syntax for
aRDF in Section [2 - in essence, an aRDF triple consists of an ordinary RDF
triple together with an annotation (member of 4). We then present a declara-
tive (model-theoretic) semantics for aRDF, together with notions of consistency
and entailment in Section [3] — unlike ordinary RDF, an aRDF theory can be
inconsistent and hence we provide a consistency check algorithm, together with

* Work supported in part by ARO grant DAAD190310202, AFOSR grant
FA95500510298, the Joint Institute for Knowledge Discovery, and by a DARPA
subcontract from the Univ. of California Berkeley.

! Suppose (A, <) is a partially ordered set. L. € A is the “bottom element” of A iff
1 <z for all z € A.

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 487-[501] 2006.
© Springer-Verlag Berlin Heidelberg 2006



488 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

a result that whenever the partial order is a lattice, consistency is guaranteed.
In Section ], we present algorithms to answer three types of atomic queries, each
with one unknown, together with an algorithm to answer conjunctive queries.
We then present our prototype implementation and experiments in Section
— our experiments show that our framework is very efficient to implement in
practice.

2 aRDF Syntax

We assume the existence of a partially ordered finite set (A, <) where elements of
A are called annotations and =< is a partial ordering on A. We further assume A
has a bottom element. For example, we could have any of the following scenarios:

1. Apyzzy may be the set of all real numbers in the closed interval [0, 1] with
the usual “less than or equals” ordering on it.

2. Atime = N could be the set of all non-negative integers (denoting time
points) with the usual “less than or equals” ordering on it.

3. Atime—int = {|z,y] | 2,y € N could be the set of all time intervals. The
interval [x,y] as usual denotes the set of all ¢ € N such that z < ¢ <y. The
inclusion ordering C is a partial ordering on this set.

4. Apedigree could be an enumerated set of sources with a partial ordering on
them. If 51,52 € Apedigree, then we could think of s; < s3 to mean that so
has “better” pedigree than s;.

5. Aset—pedigree could be the power set of Apcgigree with the Egli-Milner or-
dering which says that S; =< Sy iff (Vsl S Sl)(EISQ S 52)81 C s9 A (VSQ S
S2)(Is2 € S1)s1 T s2. Note here that T is the ordering on Apedigree-

6. Afuztime could be the set of all pairs (x,y) such that « € [0,1] is a fuzzy
value and y is a time point. The =< ordering on Ajy.iime can be defined as
(z,y) X (2/,y") iff e <2’ and y < y'.

These are just a few examples of partial orders. All the partial orders above
except Apedigree and Aget—pedigree are complete latticedd. Note that one can con-
struct arbitrary combinations of partial orders by taking the Cartesian Product
of two known partial orders and taking the pointwise ordering on the Cartesian
Product as shown in the definition of Aty time.

Suppose now that (A, =) is an arbitrary but fixed partially ordered set. As
in the case of RDF, we also assume the existence of some arbitrary but fixed
set R of resource names, a set P of property names, and a set dom(p) of values
associated with any property name p.

An annotated RDF-ontology (aRDF-ontology for shortﬁ is a finite set of triples
(r,p : a,v) where r is a resource name, p is a property name, a € A and v is a

2 A partially ordered set (X, <) is a complete lattice iff (i) every subset of X has a
unique greatest lower bound and (ii) every directed subset of X has a unique least
upper bound. A set Y C X is directed iff for all y1,y2 € Y, there is an x € X such
that y1 <z and y» < z.

3 We will often abuse the term ontology to refer to both the intensional part (the
schema) and the extensional part (the instance).



Annotated RDF 489

value (which could also be a resource name). In particular, this representation
also supports RDF Schema triples such adl: (i) (A,rdfs : subClassOf, B) in-
dicates a subclass relationship between classes (which are also resources); (ii)
(X,rdf : type,C) indicates that a resource X is an instance of some class
C; (iil) (p,rdfs : subPropertyOf,q) denotes a sub-property relation between
p,q € P. We denote by rdfs : subPropertyO f* the reflexive, transitive closure
of rdf s : subPropertyO f [ Once R, P and dom(+) are fixed, we use the notation
Univ to denote the set of all triples (r,p,v) where s € R,p € P and v € dom(p).
Throughout the rest of this paper, we will assume that R, P, A, <,dom(-) are all
arbitrary, but fized.

e
{ Orgerization |

TR E e

"y I/errmmzr* )]

N -

il it

R ACME CS
a0 e “3E

. A

' Prosaszor P
— N | it
1200, 2004 —
hastuperyisor |16 2004

y

" : S
| et | psSuper 20t J =
| com 8 = il AubCEss 0l —
= it b e A Depantmerzl weepaus, o o
1= ke | M FL = Fagtty List P;n’:;I:.;.’
Triiees ned aeplefy annatated are assumed annobatad T anvwatiad aa s a: raduats Sch
wh (1 e Pr———" T = Parel Wl

(a) aRDF graph annotated with Atime—int (b) aRDF graph annotated with Apedigree

|
Alliateante o JEArIED
' oedns

CEussmenai™, _ ST
i e Empliyes
. AT i

(YK

1 (D&, 1998}

wem |-'
SR 5
|
I -+ sk, (05 2004

Adam J--
| A & - izl Chasel
I =rdliyss
hamdviser 5 s T basSuparng
Ipkes ret explety annataled are assumed arnotibe
“wil 7. v,

(c) aRDF graph annotated with A fyztime

Fig. 1. Three example aRDF ontology graphs

Definition 1. (aRDF Ontology graph). Suppose O is an aRDF-ontology. An
aRDF ontology graph for O is a labeled graph (V, E,\) where

4 rdfs : range and rdfs : domain are also possible, as well as any other RDFS
constructs. The paper focuses primarily on aRDF instances, therefore rdfs
subPropertyO f schema constructs are particularly important.

® Note we did not require that P N R = ().

5 We do not address reification and containers in RDF due to space constraints.



490 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

(1) V=R U U,ep dom(p) is the set of nodes.

(2) E = {(r,r")]| there exists a property p such that (r,p: a,r") € O} is the set
of edges.

(8) Mr,r")y=A{p:a|(r,p:a,r") € O} is the edge labeling function.

It is easy to see that there is a one-to-one correspondence between aRDF-
ontologies and aRDF-ontology graphs. Hence, we will often abuse notation and
interchangeably talk about both aRDF ontologies and aRDF ontology graphs.

Example 1. Figure [I] shows three examplesﬁ of aRDF ontology graphs. Figure
[M(a) is annotated with elements of Agme—int. Therefore, the triple (William,
rdf : type : [1991,now], Professor) denotes the fact that William has been a
Professor since 1991. Figure [l(b) uses Apedigree for the annotation, with the par-
tial order given in the figure. Here, the triple (Steve, chairOf : DW, ACME CS
Dept) denotes that the knowledge of Steve being the department chair was ob-
tained from the department web page. Figure [[[c) is annotated with Apuztime
and contains both uncertainty and temporal information. For instance, the triple
(Adam,rdf : type : (0.85,1999), AcademicResearcher) denotes that we are
85% certain that Adam was an academic researcher until 1999.

The rest of the paper will primarily focus on the semantics and query processing
at the aRDF instance level; the problem of aRDF schema queries will be addressed
in an extended version of this paper. We note that there are a number of ways in
which aRDF theories can be represented in practice. One possible way is to use
quadruplesﬁ; another possibility is the use of reification. Since aRDF semantics
and query processing are the focus of this paper, we omit a lengthy discussion
on representation issues.

As in the case of OWL, we differentiate between transitive and non-transitive
properties. The RDF'S semantics already specifies transitivity for rdfs:subClassOf
and rdfs:subPropertyOf relations. The reader may view the specification of tran-
sitive properties as a poor man’s inference capability for RDF instance data. We
assume that all properties in P are marked transitive or non-transitive. For in-
stance, in Figure [[{b) we consider hasSupervisor to be a transitive propertyﬁ.

Definition 2 (p-Path). Let O be an aRDF ontology graph, p a transitive prop-
erty in O and suppose r,r’ € O are two nodes. There is a p-path between r and
v’ if there exist t1 = (r,p1 : a1,71), .. ti = (Fic1,D5 ¢ @3y 7))y ooy bk = (Ph—1, Pk
ar,r") € O such that ¥V i € [1,k] (p;,rdfs : subPropertyOf*,p). We will de-
note a p-path Q by the set of triples {t1,...,tr} that form the path; we also say
Ag ={a1,...,ax} is the annotation of the p-path Q.

Ezample 2. Consider the aRDF ontology graph shown in Figure [Ii(c) and sup-
pose the hasSupervisor property is transitive. The triples (Max, hasAdvisor :

" In all examples, classes are represented with circular node and instances with rec-
tangular nodes.

8 A quadruple-based approach is currently discussed for representing contexts/data
provenance in RDF — see http://www.w3.org/2001/12/attributions/.

9 Although this is not generally the case, we assume this for the sake of the example.



Annotated RDF 491

(0.9,2004), Adam) and (Adam, hasSupervisor : (0.95,2003), William) form a
hasSupervisor-path. Similarly, in Figure [[((b), assuming hasSupervisor and
hasAdvisor are transitive properties, the triples (Max, hasAdvisor : DW,
William) and (William, hasSupervisor : GS, Steve) form a hasSupervisor-
path, since (hasAdvisor,rdfs : subPropertyO f, hasSupervisor).

3 aRDF Semantics

In this section, we provide a declarative semantics for aRDF ontologies and study
consistency of such ontologies.

Definition 3. An aRDF-interpretation I is a mapping from Univ to A.

Definition 4. An aRDF-interpretation I satisfies (r,p : a,v) iff a < I(r,p,v).
1 satisfies an aRDF-ontology O iff:

(S1) I satisfies every (r,p:a,v) € O.

(S2) For all transitive properties p € P and for all p-paths Q = {t1,...,tx} in
O, where t; = (ri,p; : a;,1i+1), and for all a € A such that a < a; for all
1<i <k, it is the case that a = I(r1,p,Tk+1)-

O is consistent iff there is at least one aRDF-interpretation that satisfies it. O
entails (r,p : a,v) iff every aRDF-interpretation that satisfies O also satisfies
(r,p:a,v).

The definition of satisfaction and the complex definition of case (S2) above are
best illustrated with an example.

Ezample 3. Let O be the aRDF ontology graph in Figure [i(c), where A =
A tuztime. Suppose the hasSupervisor property is transitive. Let Io(t) = (1, now)
Yt € Univ. Iy satisfies O and hence O is consistent. Furthermore, O = (Mary,
hasAdvisor: (0.7,2001), William) because for any satisfying interpretation, (0.7,
2001) < (0.7, 2003) < I(Mary, hasSupervisor, William).

The intuition behind item (S2) of Definition [l is related to the notion of en-
tailment. For instance, in Figure[Il(c) — with hasSupervisor transitive —, from
the triples (Max, hasAdvisor : (0.9,2004), Adam) and (Adam, hasSupervisor :
(0.95,2003), William), we can infer that with 90% probability, William was
Max’ supervisor until 2003, since V (p,t) € Afuztime s-t. (p,t) < (0.9,2004) and
(p,t) = (0.95,2003) (i.e. V (p,t) =< (0.9,2003)), (p,t) = I(Maz, hasSupervisor,
William).

It is immediately clear from Definition [ that unlike RDF ontologies which are
always consistent, aRDF ontologies can be inconsistent. Consider the aRDF ontol-
ogy graph in Figure[Il(b) and assume the hasSupervisor property is transitive.
We can identify the following sources of inconsistency:

1. The triples (M ary, hasSupervisor : PW, William) and (M ary, hasSuper —
visor : F'L, WilliamE indicate that for any interpretation I, we cannot have

10 The presence of such triples is reasonable since it indicates the same information was
obtained from different sources for which we cannot compare the pedigree according
to the partial order given.



492 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

that PW =< I(Mary, hasSupervisor, William) and FL < I(Mary, hasSu-
pervisor, William), which contradicts item (S1) from Definition [l

2. The presence of the different hasSupervisor-paths {(Maz, hasAdvisor:FL,
William), (William, hasSupervisor:GS, Steve)} and {(Max, hasSupervisor :
DW, Steve)} means that for any interpretation I, we cannot have that FL <
I(Max, hasSupervisor, Steve) and DW =< I(Max, hasSupervisor, Steve),
thus contradicting item (S2) from Definition [l

We now state a necessary and sufficient condition for checking consistency of an
aRDF ontology.

Theorem 1. Let O be an aRDF ontology. O is consistent iff:

(C1) ¥p € P and ¥V r,r € R such that 3 distinct ay,...ar € A and Vi €
[1,k] 3(r,p:a;,r") €O, then T a € A st Vie[l,k] a; =a AND

(C2) ¥p € P transitive, ¥r,r'" € R, let {Q',...,Q"} be the set of different
p-paths between r and 1’ and let {Ag1, ..., Agr} be the annotations for
these p-paths. Let Boi = {a € Ala = a’ VYa' € Agi}. Then 3 a € A s.t.
b € Usepn g Boirb = di.

The following result states that if we require A to be a partial order with a top
elemen, then we are guaranteed consistency.

Corollary 1. Let A be a partial order with a top element. Then any aRDF
ontology O annotated w.r.t. A is consistent.

The justification is immediate, since the interpretation that maps every triple in
Univ to the top element satisfies any aRDF ontology.

Theorem [I] provides an immediate algorithm for checking the consistency of
aRDF ontologies. We present this algorithm in Figure 2.

Ezample 4. Let O the aRDF ontology graph in Figure [[(b). When we run our
consistency check algorithm and execution reaches line 4 with (7, p, r’)=(Mary,
hasSupervisor, William), A = {PW,FL} from line 2. Since /3 a € A s.t.
PW, FL = a, the algorithm will determine that the ontology is inconsistent.

Now consider the same aRDF ontology without the triple (Mary, hasSuper—
visor : PW, William). In this case, the algorithm will proceed to the loop start-
ing on line 6. However, for the iteration for which p = hasSupervisor on line
6 and (r,7") = (Maz, Steve) on line 9, the set P’ will contain the two possible
hasSupervisor-paths from Max to Steve detailed in Example Bl Then on line
12, A= {{DW},{FL,GS}} and on line 13 B = {DW, FL} and since A a € A
s.t. DW, F L < a, the algorithm will return False on line 14.

The following result states the correctness of our consistency check algorithm.

Proposition 1 (Consistency check correctness). The aRD Fconsistency
on input (O, A, <) returns True iff O is consistent.

' Note that (C2) implies (C1) when p is transitive, since paths of length 1 are possible.
12 An element T € A is a “top” element if z < T for all z € A.



Annotated RDF 493

Algorithm aRDFconsistency (O, A, <)

Input: aRDF ontology O and annotation (A, <).

Output: True if O is consistent, False otherwise.

Notation: For a property p we write SP(p) = {q € P|(q,rdfs : subPropertyOf*,p)}. We denote
by O|, the restriction of the aRDF graph O to triples labeled with properties in SP(p). N(O)
denotes the set of nodes in the aRDF ontology graph O.

lAfr(r,pr)G{(r,p,r)ElaE.Ast (r,p:a,r’) € O} do
2. A«—{a€Al(r,p:a,r’) €O}

3. if |A] > 1 then

4. if Aa€ Ast.Va' € A,a’ < a return False;

5. end

6. for p € P transitive do

7. O« Olp;

8. P« {paths Q CO'| AQ' CO' AQ" D Q};

9. for (r,r') € N(O') x N(O') do

10. P’ — {Q € P|r,r’ are the first and last node respectively in Q};
11. if |P’| > 0 then

12. A —{Aq|lQ e P'};

13. B—{bec AlJAg € As.t.Vaec Ag,b=a};

14. if Aa € As.t. Vb€ B,b < a then return False;
15. end

16. end

17. end

18. return True;

Fig. 2. Consistency checking algorithm for aRDF ontologies

The consistency check algorithm runs in polynomial time as shown below.

Proposition 2 (Consistency check complexity). Let O be an aRDF ontol-
ogy graph and let n = |N(O)|, let e = |O| and let p = |P|. Let (A, <) be a partial
order and let a = | A[Y. Then aRDF consistency(O, A, <) is O(p-(n®-e+n-a?)).

The result follows from the loop on lines 6—17. For any transitive property, we
first compute the set of all maximal paths in O, (line 8). Since we have to keep
the paths in memory (and not only their cost), this operation can be performed
in at most n® - e steps in a modified version of Floyd’s algorithm that records
the paths explored. The loop on line 9 iterates through all the maximal paths
found — there can be at most 2n of them. For each such path we compute the
set A (line 12), which takes at most e steps, since any maximal path is of length
less than or equal to e. The size of each A set is bounded by a and the number
of maximal paths for the entire graph is at most O(n), meaning line 13 will be
run at most O(n - a?) times. Line 14 is run at most O(n - a?) times as well, since
|B| is bounded by a.

4 aRDF Query Processing

In this section, we consider aRDF-queries. We assume the existence of sets of
variables ranging over resources, properties, values and A. A term over one of
these sets is either a member of that set or a variable ranging over that set.
An aRDF query is a triple (R, P : A,V) where R, P, A,V are all terms over

13 We assume without loss of generality that a < e, since we can use at most one
annotation for each edge.



494 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

resources, properties, annotations and values respectively. An aRDF query of
the above form is atomic if at most one term in it is a variable.

Ezample 5. Consider the aRDF ontology graph in Figure[Il(c). The following are
aRDF atomic queries:

— What was the relationship between Max and William until 2002 with 80%
probability? (Max, ?p : (0.8,2002), William).

— Who was Mary’s supervisor until 2002 with 70% probability? (Mary, has-
Supervisor:(0.7,2002), ?v).

— Who was affiliated with ACME University until 2002 with 65% probability?
(?r, affiliatedWith:(0.65,2002),ACME University).

Definition 5 (Semi-unifiable aRDF triples). Two aRDF triples (r,p : a,v),
(r',p" : d',v'") are 6 semi-unifiable iff there exists a substitution 6 such that
6 = 1'0 and pd = p'0 and vl = '0.

As usual, rf denotes the application of 8 to r.

Definition 6 (Query answer). Let O be a consistent aRDF ontology and let
q = (rq,Pq : aq,Vq) be a query on O. Let Ao(q) ={(r,p:a,v)|(rq,pq : aq,vq) is
semi-unifiable with ¢ and O = (r,p : a,v) A ((a is a variable) V (aqg < a))}. The
answer to q is defined as Anso(q) = {(r,p : a,v) € Ao(q)] A S C Anso(q) —
{(r,p:a,v)} st. S} (r,p:a,v)}.

Ao(q) consists of all ground (i.e. variable-free) instances of ¢ that are entailed
by O. However, Ap(g) may contain redundant triples - for example, using our
time — int partial ordering, if (r,p : [1,100],v) is in Ao (q), then there is no point
including redundant triples such as (r,p : [1,10],v) in it. Anso(g) eliminates all
such redundant triples from A (q).

Ezample 6. Consider the queries in Example Bl The answers are:

— Anso(q) = {(Maz, hasSupervisor : (0.9,2003), William)}. Note that the
answer does not include for instance (Maz, hasSupervisor : (0.9,2001),
William) since the latter triple is already entailed by a triple in the
answer.

— Anso(q) = {Mary, hasAdvisor : (0.7,2003), William)}.

— Anso(q) = {Max,af filiatedWith : (0.7,2003), ACME University)}.

The following result specifies a condition that must hold when O entails a ground
aRDF triple.

Theorem 2. Let O be a consistent aRDF ontology and let (r,p : a,v) be an
aRDF triple. O |= (r,p : a,v) iff one of the following conditions holds:

(E1) 3 (r,p: a1,v),...,(r,p: ar,v) € O and let A be the set of values a’ such
that a; < o' Vi € [1,k] (|A| > 1 since O is consistent). Then ¥V a' € A,
a=<a.



Annotated RDF 495

(E2) 3 p-paths Q',..., Q" between r and v. Let Bgi = {b e Alb = d' Vd' €
Aqi}. Let A be the set of values a’ such that ¥ b € U;epy 4y Boi,b = @
(JA| > 1 since O is consistent). ThenV o’ € A, a < d’.

Given an ontology O, we can infer new triples from O using the following two
operators, f1, fo:

1. 1(O0) = {(r,p : a,v)|3 (r,p : a1,v : a2 v € O st. (p/,rdfs :
subPropertyO f*,p) A a is a minimal upper boun | of aj,as}.

2. f2(0) = {(r,p : a,v)|3(r,p" : a1,7"), (", p" : az,v) € O st. (p/,rdfs :
subPropertyOf YA (p”,rdfs : subPropertyOf*,p) A (V o' € A,(d
am ANd < ag) = (a =< a)) A (a minimal with these properties w.r.t. <)}.

Let 1(0) = f1(0) U f2(0).

Proposition 3 (Closure of O). p is a monotonic operator, i.e. O1 C Oy
implies 1(O1) C p(O2). Hence, by the Tarski-Knaster theorem, it has a least
fizpoint denoted by Ifp(O) called the closure of O.

Ezample 7. Let O be the aRDF ontology in Figure [(c). Then Ifp(O) contains
all triples in O and the triple (Maz, hasSupervisor: (0.9,2003), William,).

The following result is a necessary and sufficient condition for entailment by an
aRDF ontology.

Proposition 4. Let O be an aRDF ontology. O |= (r,p : a,v) iff (r,p : a,v) €
Ifp(0) or A(r',p' : a',v") € Ifp(0) s.t. {(+',p' : d',v")} E (r,p: a,v).

Proposition 5. Let O be a consistent aRDF ontology and q a query on O. Then
Ansg(0O) C Ifp(0).

The above proposition gives us a very simple algorithm for answering queries.

1. Consider query ¢ = (r,p : a,v) on aRDF ontology O. Compute Ifp(O).

2. A — {(,p : d,v) € Ifp(O)|(r',p : d,v') semi — unifiable with q A
((a is a variable) V (a = a’))}.

3. Eliminate from A triples (r,p : a,v) entailed by subsets of A —{(r,p: a,v)}.

However, we can do much better by avoiding the costly computation of Ifp(O).

4.1 Answering Atomic Queries

Although the closure of an aRDF ontology gives a simple method of computing
the answer to queries, its computation is potentially expensive. We show more
efficient algorithms for answering atomic queries. The algorithm for queries of
type ¢ = (r,p : a,?v) is given in Figure [B} computing the answers to atomic
queries of type ¢ = (?r,p : a,v) is very similar and omitted for reasons of space.

4 4 is an minimal upper bound of ai,as iff a1 < a and a2 < a and there is no other a’

such that a’ < a and aj,a2 < ad’.



496 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

Algorithm atomicAnswerV (0, A, <, q)

Input: Consistent aRDF ontology O, annotation (A, <) and query ¢ = (r,p : a, 7v).

Output: Anso(q).

Notation: For a property p we write SP(p) = {q € P|(q, rdfs : subPropertyOf*,p)}. We denote
by Ol, the restriction of the aRDF graph O to triples labeled with properties in SP(p).

1. O — Olp;
2. Ans «— ();
3. if p is non-transitive then

v
A —{a € A|(r,p’ : a0
B—{bc AVa€ A,a ;
C«+— {ceB| Ac € B,c #cs.t. ¢/ Zc};
Ans — Ans U {(r,p’ : c,v')|c € C ANa < c};
end
10. else if p transitive then

L RN O
IA
o>
-

11. for all v/ s.t. 3Q%, ..., Q’C p-paths from 7 to v/ do
12. B—{bcABi€[lk] s.t.Va' € Ayi,b=<a'}
13. C «— {ce AlVbe B,b < c};

14. D—{decC| Ad eC,d #ds.t d <d};

15. Ans «— AnsU {(r,p:d,v")|d € D Aa =< d};

16. end

17. end

18. return Ans;

Fig. 3. Answering atomic aRDF queries (r,p : a, 7v)

Ezample 8. Consider the aRDF ontology graph in Figure [i(c) and the query
(M ax, hasSupervisor : (0.8,2002), ?v). Since hasSupervisor is transitive, the
algorithm will go on the second branch, starting at line 10. The loop on line
11 iterates through all the values reachable through hasSupervisor-paths from
Maz, which are exactly {Adam, William}. Let us consider the second itera-
tion, where v' = William. There is only one hasSupervisor-path between Max
and William, containing triples (Max, hasAdvisor : (0.9,2004), Adam) and
(Adam, hasSupervisor : (0.95,2003), William). Then Ag: = {(0.9,2004), (0.95,
2003)}. Therefore B is exactly the set of pairs (p,t) s.t. (p,t) < (0.9,2003). C
will be the set of pairs (p, t) greater than (0.9,2003) and thus D = {(0.9,2003)}.
Therefore, the triple (M az, hasSupervisor : (0.9,2003), William) will be added
to Ans.

The following theorem states that atomicAnswerV is correct.
Proposition 6. atomicAnswerV (0, A, <, q) returns Anso(q).
The following result says that atomicAnswerV runs in polynomial time.

Proposition 7. Let O be an aRDF ontology graph and let n be the number of ver-
tices in the ontology graph O, let e = |O| and let p = |P|. Let (A, =) be a partial
order and let a = | A|. Then atomicAnswerV (0, A, =<,q) is O(n? -e +n-e-a?).

The complexity result is given by the loop on lines 11—16. We start by determin-
ing all values reachable by p-paths from r and the corresponding paths, which can
be done in O(n?-e) since v is fixed. Since there are at most O(n) paths originating
from r, each with at most O(e) edges and the size of the annotation for each path
is bounded by a, line 12 will be run at most O(n - e - a?) times. Since the sizes of
B, C, D are all bounded by a, the same result holds for lines 13—15.



Annotated RDF 497

Algorithm atomicAnswerP(O,A, <, q)
Input: Consistent aRDF ontology O, annotation (A, <) and query ¢ = (, ?p : a,v).
Output: Anso(q).

1. Ans «— 0;

2. for all p’ such that 3 Q',..., Q" p’-paths from r to v do
3. B—{beAZic[lLk]st.Va € Agi,b=<a'};

4. C«—{ce AlVbe B,b=c};

5. D« {deC|Ad e€C,d #dst.d <d};
6. Ans — AnsU{(r,p’ : d,v)|[d € D ANa < d};

7. end

8. return {(r',p’ : a’,v’) € Ans| AS C Ans — {(v/,p’ : a’,v")} s.t. S = (r',p : a’,v")};

Fig. 4. Answering atomic aRDF queries (r,?p : a,v)

An even tighter complexity bound holds when the annotation is a complete
lattice. In this case, after computing the set A on line 11, we can simply compute
the least upper bound of the elements in A and thus obtain set C' (on line 13).
For complete lattices such as A¢ime—int, this can be done in at most a linear
number of steps in |A|. Thus, the overall complexity of the algorithm becomes
O(n?-e+n-e-a).

Algorithm atomicAnswerP given in Figure dl computes the answer to atomic
queries with an unknown property. The main difference from atomicAnswerV
is that the graph we need to explore is the one containing all paths between r
and v, instead of the one containing all p-paths starting at . Depending on the
shape of the aRDF ontology (e.g., breadth vs. depth), either search space may
be larger, but the worst case complexity is identical. Algorithm atomicAnswer A
given in Figure [l computes the answer to atomic queries with unknown annota-
tion. For atomicAnswerA, r,p,v are all known therefore the step in which we
compute all paths (line 11) can be performed in at most O(n-e) steps. Therefore,
atomicAnswerA is O(n - e - a®). Correctness results for both atomicAnswerV
and atomicAnswerA similar to Proposition [f] are immediate.

Algorithm atomicAnswerA (O, A, <, q)

Input: Consistent aRDF ontology O, annotation (A, <) and query ¢ = (r, p :?a,v).

Output: Anso(q).

Notation: For a property p we write SP(p) = {q € P|(q, rdfs : subPropertyOf*,p)}. We denote
by Ol, the restriction of the aRDF graph O to triples labeled with properties in SP(p).

1. O «— Olp;
2. Ans — 0;
3. if p is non-transitive then

4. for (r,p’,v) € {(r,p' : d’,v) € Olp’ € SP(p)} do
5. A~ {a’ € A|(r,p’ :ad',v) € O}

6. B «— {be AVa € A,a <X b};

7. C«—{ceB| Ac € B,c' #cs.t. ¢/ <c};

8. Ans «— Ans U {(r,p’ : c,v)|c € C};

9. end

10. else if p transitive then

11.  {Q',...,Q"} — {p-paths from 7 to v};

12. Be—{becA[Fic[l,k] st.Va € Ay, b=a'};

13. C+«—{ce Alvbe B,b=c};

14. D« {deC|Ad €C,d #dst.d <d}
15.  Ans «— AnsU{(r,p:d,v)|d € D};

16. end

17. return Ans;

Fig. 5. Answering atomic aRDF queries (r,p :7a, v)



498 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

The methods of computing query answers for atomic queries can be extended
with minimal changes to the case of queries with multiple varlable&. 19 for reasons
of space, we omit such algorithms.

4.2 Conjunctive Queries

Let O be a consistent aRDF ontology. We define conjunctive queries as a set
Q ={q,...,qnm} of atomic queries, where ¢; = (r;,p; : a;,v;). The answer can
be defined similarly to that of atomic queries as Anso(Q) = {S C 0|30 s.t. Vi €
[1,m],3(r,p:a,v) € Ss.t.((r,p: a,v) 0 semi—unifiable with ¢;)A\((a; variable)
Vi(a; 2 a))A(AS € Anso(Q) st. S" | S)}. The algorithm for computing
answers to conjunctive queries given in Figure[fis based on the observation that
a conjunctive query is apartially instantiated aRDF graph; thus, inexact graph
matching algorithms [I1] between the graph corresponding to @ and subgraphs
of Ifp(O) give potential answer sets.

Algorithm conjunctAnswer(0O,A4, <X, Q)

Input: Consistent aRDF ontology O, annotation (A, <) and query Q = {q; = (ri,pi : ai,v;)|i €
(1,m]}.

Output: Anso(q).

Notation: For a property p we write SP(p) = {q € P|(q,rdfs : subPropertyOf*,p)}. We denote
by O|, the restriction of the aRDF graph O to triples labeled with properties in SP(p). N(O)
denotes the set of nodes in the aRDF ontology graph O.

1. if @ contains no variable property queries then

2. O(—O‘Ui SP(p;)}

3. Ans «— (;

4. do

5. O« 0

6. for all paths R in O on some property p between some r, 7’ do
7. B—{bc AV ac Ar,b=<a};

8. C—{ce AVbe B,b=<c};

9. D« {decC| Ad € C,d #d,d <d};

10. O —OuU{(r,p:d,r")|d € D};

11. end

12.  for (r,p,7’") € {(r,p,7")|Fa#a € Ast. (r,p:a,7"),(r,p:a’,r") € O} do
13. Ae{aEAl(rp a,r') € O}

14. BH{bEANaEAajb}

15. C«— {ceB| A € B, #cs.t. ¢’ <c};

16. O —Oou{(rp:c,m)lceECAa=ch

17.  end

18. while O = O’
19. Gg « the graph corresponding to Q;
20. for all matchings between G and O do

21. ok < true;

22. for i € [1,m] do

23. (r,p: a,v) < the triple in O matched to g¢;;
24. if = (a; variable) A =(a; < q) then

25. ok «— false;

26. break;

27. end

28. end

29. if ok then

30. Ans — Ans U { set of triples matched to Gg};
31. end

32. return Ans;
Fig. 6. Answering conjunctive aRDF queries

5 However, the complexity of these algorithms remains polynomial.



Annotated RDF 499

Algorithm conjunct Answer starts by computing the closure Ifp(O) in the loop
on lines 4—18. Elements corresponding to fi in Definition [ are computed on
lines 12—16, whereas elements corresponding to f, are computed on lines 6—11.
After Ifp(O) is computed, inexact graph matchings [I1] are used to determine
potential answers to the conjunctive query (line 20). Each triple in the potential
answer is checked against the annotation (if constant) of the respective query
(22—28). If all triples have “better” annotations than the corresponding query
triples, the answer is stored (line 30). The complexity of conjunctAnswer is
at worst case exponential since the computation of Ifp(O) increases the size
of the aRDF ontology polynomially and may be performed a number of times
polynomial in the size of the ontology.

5 Experimental Results

Our experimental prototype of the aRDF query system was implemented in ap-
proximately 1100 lines of Java code; the experiments were performed on an Intel
Pentium 4 Mobile processor machine at 2.30 GHz and 512MB DDR SDRAM,
running Debian Linux 1.3.3.4-9. The experiments were run using synthetically
generated aRDF datasets ranging from 10,000 to 100,000 aRDF triples, using an
uniform distribution for the random generator. The following parameters were
constant throughout the generation process: (i) |P| = 100, (ii) 10 transitive
properties, (iii) |A| = 20, (iv) 10 subproperty relations.

900

800
700
600
500
400

Time [ms]

300
200
100

0
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Dataset size [nodes]

Fig. 7. aRDFconsistency running time

The first set of experiments shown in Figure [ show the time needed for
consistency checking. We see that aRDFconsistency takes under 1 second for
graphs of 100,000 nodes. Figure Bla) describes the query running time for the
three algorithms detailed where queries were randomly generated. The main
points that determine the behavior observed in Figure B(a) and B(b) are: (i) in
line 11 of answerV we look for p-paths originating at a known r; (i) line (2)
of answerP we look for any transitive property paths between a known r and
v; (iii) line (11) of answer A determines p-paths between a known r and v. It is



500 O. Udrea, D.R. Recupero, and V.S. Subrahmanian

35000 atomicAnswerV 1400

atomicAnswerP
atomicAnswerP — atomicAnswerA
30000 atomicAnswerA 1200

25000 1000

Z 20000 E 800
£ 15000 g 600
10000 400
5000 200
0 . — .

10000 15000 20000 25000 30000 35000 40000 45000 50000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Dataset size [nodes] Dataset size [nodes]
(a) Running time for atomic queries (b) Running time of answerA and answerP

Fig. 8. Query running time

easy to see why (iii) is the fastest, since r,v,p are all known. We can also see
that for the experimental setting described, (i) takes more time than (ii); this is
due to the relatively small number of properties in the graphd-J.

6 Related Work

There has been considerable work on extending RDF with new features such
as time intervals (statements saying something is true at all time points in an
interval [5]), uncertainty [6][7](though these are just one page position papers)
and provenance [2] which describes a model for representing named RDF graphs,
thus allowing statements about RDF graphs to be represented in RDF. [5] gives a
model for temporal RDF, allowing triples to be specified as true for a finite time
interval. [12] defines a model for representing multi-dimensional RDF, where
information can be context dependent; for instance the title of a book may be
represented in different languages. Our approach differs from all of the above:
(i) we define a general framework for extending the RDF data model with anno-
tations from an arbitrary partially ordered set; (ii) we give efficient algorithms
for querying annotated RDF ontologies.

Our framework is based upon annotated logic [8,0] — however, by examining
RDF triples, we can provide far greater efficiency than annotated logic was able
to provide. Moreover, annotated logic was unable to handle the kinds of queries
shown where properties and the annotations desired were unknown.

To the best of our knowledge, this is the first paper that has attempted to
provide a single framework - where by swapping a new partial order (with bot-
tom) for another - we can get different types of reasoning capabilities in RDF.
We have shown that annotated RDF is capable of supporting diverse forms of
reasoning as well as combinations of reasoning (e.g. via fuztime), has a rich
declarative semantics, and provides an efficient computational engine for appli-
cation building.

16° A phenomenon normally encountered in real-world RDF graphs, as we can see from
most ontologies at www.daml.org.



Annotated RDF 501

References

10.

11.

12.

. Kahan, J., Koivunen, M.R.: Annotea: an open rdf infrastructure for shared web

annotations. In: WWW ’01: Proceedings of the 10th international conference on
World Wide Web, New York, NY, USA, ACM Press (2001) 623-632

Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.. Named graphs, provenance and
trust. In: WWW ’05: Proceedings of the 14th international conference on World
Wide Web, New York, NY, USA, ACM Press (2005) 613-622

. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:

Rql: a declarative query language for rdf. In: WWW ’02: Proceedings of the 11th
international conference on World Wide Web, New York, NY, USA, ACM Press
(2002) 592-603

. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of semantic web data-

bases. In: PODS ’04: Proceedings of the twenty-third ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, New York, NY, USA, ACM
Press (2004) 95-106

Gutiérrez, C., Hurtado, C.A., Vaisman, A.A.: Temporal rdf. In: ESWC. (2005)
93-107

D. Dubois, M., Prade, H.: Possibilistic uncertainty and fuzzy features in descrip-
tion logic: a preliminary discussion. In: Proc. Workshop on Fuzzy Logic and the
Semantic Web (ed. E. Sanchez). (2005) 5-7

Straccia, U.: Towards a fuzzy description logic for the semantic web. In: Proc.
Workshop on Fuzzy Logic and the Semantic Web (ed. E. Sanchez). (2005) 3-3
Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic program-
ming and its applications. J. Log. Program. 12 (1992) 335-367

Leach, S.M., Lu, J.J.: Query processing in annotated logic programming: Theory
and implementation. J. Intell. Inf. Syst. 6 (1996) 33-58

Fitting, M.: Bilattices and the semantics of logic programming. J. Log. Program.
11 (1991) 91-116

Hlaoui, A., Wang, S.: A new algorithm for inexact graph matching. In: ICPR (4).
(2002) 180-183

Gergatsoulis, M., Lilis, P.: Multidimensional rdf. In: Proc. 2005 Intl. Conf. on
Ontologies, Databases, and Semantics (ODBASE). Volume 3761., Springer (2005)
1188-1205



	Introduction
	{\textsf{aRDF}} Syntax
	{\textsf{aRDF}} Semantics
	{\textsf{aRDF}} Query Processing
	Answering Atomic Queries
	Conjunctive Queries

	Experimental Results
	Related Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




