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1 Introduction 
Psychological studies of analogy and similarity suggest that there are core processes of comparison and 

analogical inference that enter into tasks ranging from visual perception to conceptual change (Gentner, 

Holyoak & Kokinov, 2001; Hofstadter & Sander 2013; Holyoak & Thagard, 1995).  These comparison 

processes can be characterized by the principles of structure-mapping theory (Forbus, Gentner & Law, 

1995; Gentner, 1983; Gentner & Markman, 1997).   To be sure, some aspects of analogical processing 

seem to vary across different tasks: comparison in visual perception operates at a faster time scale than 

reasoning through an analogy in a debate, for example.  However, many fundamental properties (for 

example, 1:1 mappings and systematicity) are preserved over a surprisingly broad range of cognitive 

processes (Gentner, 2003, 2010; Gentner & Markman, 1997; Krawczyk et al., 2004, 2005).  

SME, the Structure-mapping Engine (Falkenhainer, Forbus & Gentner, 1986, 1989), embodies a process 

model of how structure-mapping takes place. A number of other computational models (including IAM 

(Keane & Brayshaw, 1988), ACME (Holyoak & Thagard 1989), COPYCAT (Mitchell, 1993), TABLETOP 

(French, 1995), LISA (Hummel & Holyoak, 1997), DRAMA (Eliasmith & Thagard, 2001), AMBR (Kokinov & 

Petrov, 2001), CAB (Larkey & Love, 2003), and DORA (Doumas et al., 2008)) also draw on structure-

mapping theory, but use different processing algorithms.  We briefly review some of these later in this 

paper. (For a more complete review of current simulations of analogical comparison, see Gentner & 

Forbus, 2011.)  

SME’s basic algorithm has held up quite well since its first publication in 1986. Nonetheless, it has 

evolved considerably. These extensions allow for what we term realistic scale analogical processing—

processing that operates in concert with other cognitive processes in the kinds of complex tasks that 

occur in everyday reasoning.  There has been considerable success using SME to model comparison 

processes in isolation (Gentner et al. 1993; Gentner et al. 2009; Loewenstein & Gentner, 2005; Markman 

& Gentner, 1993b).  However, this work, along with most other work on analogical modeling, suffers 
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from three limitations:  (1) restriction to small analogies; (2) the use of hand-coded representations; and 

(3) failure to integrate analogical processes with other parts of cognition.  Our term ‘realistic scale’ is 

meant to convey an approach to simulation that addresses these three points. 

Our goal is to make good on the claim that analogical comparison is a core process that cuts across 

different domains and tasks. We aim to capture the way analogy is used in tasks such as visual 

reasoning, understanding and solving textbook problems, and moral decision-making. These kinds of 

tasks have been largely neglected in the modeling literature.  In part this is simply because modeling 

realistic-scale phenomena is hard—both because of the complexity of creating such software and 

because of the difficulty of gathering the necessary psychological data to guide the design and evaluate 

the results.  But another reason is that most analogical matchers, including our own first-generation 

version of SME (Falkenhainer et al., 1986), cannot scale up to these challenges (Eliasmith & Thagard, 

2001; Larkey & Love, 2003).  

This paper describes a set of techniques we have incorporated into SME over the last two decades to 

improve its capacities and meet the challenge of simulating realistic-scale psychological phenomena 

involving comparison.  The techniques are: 

1. Greedy merging enables SME to rapidly construct up to three near-optimal global 

interpretations, guaranteeing polynomial-time operation. 

2. Incremental matching enables SME to model tasks for which information is not all available 

at once. 

3. Ubiquitous predicates enable SME to model the varying degrees to which items may suggest 

alignment.  

4. Structural evaluation of candidate inferences enables SME to model judgments of the 

plausibility and interestingness of an analogical inference. 
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5. Match filters enable task models to communicate constraints to SME to influence the 

mapping process.    

Section 2 briefly reviews the principles of structure-mapping and provides a high-level overview of how 

SME works to provide the necessary context for what follows.  Section 3 discusses the issue of scale in 

analogical processing, and summarizes five investigations that provide evidence for the necessity of 

considering larger descriptions in analogical processing than most simulations have used.  Section 4 

discusses the techniques above in detail, showing how they work and why we believe they are 

psychologically plausible.  Section 5 shows that the theoretical worst-case complexity of SME is 

O(n2log(n)), where n is the number of items in the base or target1.  We also show, via an empirical 

complexity analysis over a large number (> 5,800) of examples from simulation studies, that the 

theoretical bound is a gross over-estimate of resource requirements in realistic situations, although it 

does capture growth in resource usage appropriately.  Section 6 discusses related work not already 

brought up in earlier sections, and Section 7 discusses some broader issues.   The current SME algorithm 

and the complexity analysis are described in Appendix A.   

2 A brief summary of Structure-Mapping Theory and SME 
Structure-mapping theory (Gentner, 1983, 1989, 2010; Gentner & Markman, 1997) postulates that 

analogy and similarity operate via the same structural alignment process, operating over structured 

representations.  That is, the descriptions being compared are symbolic, including entities, attributes of 

those entities, and relationships between entities and other relationships.  

                                                             
1 Big-O notation is standard in computer science as a way of describing how some property of a computation 
grows as a function of the size of its inputs, i.e. O(n) time means that as the number of input items, here, n, 
doubles, the run time of the computation will double, up to some multiplicative constant. 
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Formally, the elements of SME’s representations are objects (or entities), object attributes (one-place 

predicates), relations (predicates that take two or more arguments), and functions. As predicates, 

attributes and relations express assertions with potential truth values, such as HOT(sun) or REVOLVE-

AROUND(earth, sun)2. In contrast, functions map from a set of arguments onto another argument—

typically, a dimension. Functions are chiefly used to express dimensional information, such as 

DIAMETER(earth)=12742 Km. Psychologically, functions capture the phenomenon that people fluently 

map relational structures across dimensions—e.g., spacetime, as in “Exams are coming” and 

heatanger, as in “It was a heated conversation.” This pattern is captured by allowing functions to 

match non-identically within a mapping.  By using functions to set up correspondences between 

dimensions—such as spacetime—we can capture the fact that cross-domain mappings are often 

maintained consistently within a discourse, as in “Exams are coming”; “Yes, and then the holidays 

arrive” (Boroditsky, 2000; Gentner et al., 2001; Lakoff & Johnson, 1980; Thibodeau & Durgin, 2011). A 

final distinction is the order of a relation. The order of a relation is 1 plus the order of its highest-order 

argument.  First-order relations are relations between objects. Higher-order relations are relations 

between other statements. Examples of higher-order relations include logical connectives (e.g. IMPLIES), 

causal relationships, and modal operators (e.g. BELIEVES).  

The same structural alignment process is used whenever a comparison is to be done, whether it is an 

analogy or similarity.  Moreover, the same process is used when contrasting two things, as discussed 

below.  The results of a comparison can be classified based on the kind of overlap that the process finds.  

A match is considered to be literal similarity if both attributes and relations align, analogy if relations 

                                                             
22 For this paper, we use infix notation when discussing examples, and use Lisp-style notation when displaying 
representations used in working systems. 
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align but attributes do not, surface similar if attributes align but relations do not, and anomaly if neither 

align. These are graded concepts, of course, since matches are rarely perfect.   

According to structure-mapping theory, structural alignment takes as input two structured 

representations (base and target) and produces as output a set of mappings.  Each mapping consists of  

 A set of correspondences between items (i.e. entities and expressions) in the base and items in 

the target. 

 A set of candidate inferences—surmises about the target made on the basis of common 

structure plus the base representation.  Reverse candidate inferences can also be computed, 

from target to base, and these can give rise to alignable differences (Lovett et al., 2009; 

Markman & Gentner, 1996).  These inferences can include analogy skolems, which represent a 

projected entity conjectured to exist in the other description.  For example, in the historical 

heat/water analogy, a new entity, caloric, was conjectured to exist as one of the consequences 

of the analogy.  Analogy skolems are defined as functions of the entity in the originating 

description, and can be read as “something like” the original entity.  

 A structural evaluation score indicating the overall quality of the match.  This is a purely 

structural score; other considerations, such as the relevance of the inferences, are computed 

outside the mapping engine.   

Mappings are governed by the following constraints: 

 Structural consistency: Structural consistency is defined by two constraints.  The first, the 1:1 

constraint, requires that each item in the base maps to at most one item in the target and vice-

versa.  The second, the parallel connectivity constraint, requires that if a correspondence 

between two statements is included in a mapping, then so must correspondences between their 

arguments.    
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 Tiered identicality: Identical matches between predicates (relations and attributes) and 

functions are preferred.  By default, relations must match identically, but non-identical functions 

can be aligned if such alignments would support a larger overlapping structure.  A classic 

analogy from the history of science, for example, aligns Pressure with Temperature. Many 

conventional metaphors involve aligning nonidentical functions, such as height to intelligence 

(“Her I.Q is through the roof“) or space to time (“Winter is behind us”).  

Depending on task demands, the identicality constraint can be relaxed further to allow non-

identical relations to correspond, if they are suggested by a larger structure and satisfy 

additional criteria.  The most commonly used additional criterion is minimal ascension 

(Falkenhainer, 1987), whereby non-identical predicates are required to share a close 

superordinate. 

 Systematicity constraint: Preference is given to mappings that align systems of relations in the 

base and target, especially including those involving nested expressions—that is, those involving 

higher-order relations. 

Each of these theoretical constraints is motivated by the role analogy plays in cognitive processing.  The 

1:1 and parallel connectivity constraints ensure that the candidate inferences of a mapping are well 

defined.  Tiered identicality is a strong semantic constraint, avoiding structurally isomorphic but 

nonsensical mappings.  The systematicity constraint reflects a (tacit) preference for coherence and 

inferential power in analogical reasoning. 

There is now widespread agreement on the importance of structural consistency constraints in 

analogical reasoning (cf. Eliasmith & Thagard, 2001, Kokinov & French, 2003; Hummel & Holyoak, 1997, 

Krawczyk et al. 2004, 2005; Larkey & Love, 2003). However, some computational models of analogy do 

not utilize systematicity, and there is no consensus on how central other constraints might be (e.g., 
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pragmatics (Holyoak, 1985)) and on how these constraints should be expressed computationally (see 

Gentner and Forbus (2011) for a review).   

Our own simulation, the Structure-Mapping Engine (SME) (Falkenhainer, Forbus, and Gentner, 1986, 

1989) works roughly as follows: Given base and target descriptions, SME finds globally consistent 

interpretations via a local-to-global match process, which can be divided into three phases (see Fig. 1): 

Phase One: Constructing the match hypothesis network.  SME begins by proposing local 

correspondences, called match hypotheses. All possible local identity matches between expressions in 

the two representations are made in parallel3, regardless of whether they are mutually consistent.  

Additional matches are made via local parallel connectivity—for example, if two relations are matched, 

then SME attempts to match their arguments.  No attempt is made at this stage to enforce global 

consistency.  Thus the initial network is inchoate, providing the material for potential mappings.      

Phase Two: Parallel construction of structurally consistent kernels. At this point, SME starts building 

mappings by extracting structurally consistent sets from the forest of match hypotheses. To do so, SME 

does two things, again in parallel.   

1. It marks as inconsistent those match hypotheses that violate parallel connectivity. 

2. It marks as mutually inconsistent pairs of match hypotheses that would violate the 1:1 

constraint. 

It then coalesces the local matches into a set of structurally consistent connected structures, called 

kernels.  Kernels are the grist from which mappings are created.   

                                                             
3 In the current implementation of SME, this process is serial (but very fast). However, we posit that it may proceed 
in parallel in the brain. 
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Each kernel receives a structural evaluation. SME begins the structural evaluation process by first 

assigning a local score to each match hypothesis, then using a trickle-down process to propagate 

evidence downwards from a match hypothesis to match hypotheses between the arguments of the 

corresponding statements.  This provides a local means of implementing the systematicity preference, 

since match hypotheses that participate in a large matching structure will receive a higher score.   

Phase Three: Constructing mappings. SME uses a greedy merge algorithm to combine kernels into one 

or more global mappings. The basic idea is to start with the largest and deepest kernel (that is, the one 

with the highest structural evaluation) and serially add others that are structurally consistent with it. 

This results in one or a few large, structurally consistent global mappings between the representations.  

The global mapping reveals common structure between the two representations. At this stage, 

candidate inferences may be projected from one representation to the other and alignable differences 

emerge. 

SME computes only a handful of mappings, based on the settings of two parameters.  The Max Limit is 

an upper bound on the number of mappings produced, and defaults to three.  The Score Cutoff is a drop 

in score below which further mappings are ignored, and defaults to 0.8, i.e. any mappings produced 

must be within 20% of the best mapping to be output. These parameters help model capacity limits in 

analogical mapping.  For each mapping, SME computes the candidate inferences for the mapping and its 

structural evaluation score. 

For concreteness, consider the simple example in Fig. 2, based on a commonly used analogy in physics 

instruction.  It describes a cross-domain analogy between two systems that oscillate. The base is a 

classic spring-block oscillator.  The attributes spring, block, and system describe the types of entities 

involved, while relationships such as made-of and restoring-force describe some of the basic 

physical properties of the system.  There are two causal statements that describe relationships between 
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continuous parameters of the system, which are drawn from Qualitative Process theory (Forbus, 1984).  

The qprop+ statement says that the frequency of oscillation increases if the spring constant is 

increased, all else being equal.  The qprop- statement says that the frequency of oscillation decreases if 

the mass of the block is increased, all else being equal.  Finally, the restoring force is specified as the 

cause of the system’s oscillation, using the cause relationship.  The target is a pendulum.  It, too, has a 

restoring force, and like the base, has the frequency of oscillation identified as an important aspect of 

the system.  There is one causal relationship specified about frequency, namely that if the length of the 

string is longer, the frequency will decrease (i.e. the qprop- statement).  Fig. 3 also shows a graphical 

visualization of these representations, with the height of each predicate indicating what order it is.  Fig. 

4 shows the match hypothesis forest that SME generates for this example, and Fig. 5 shows the kernels.  

The mapping SME constructs is shown in Fig. 6. 

While abstract, this description of SME’s operation is enough to ground the discussion of the advances 

described in Section 4.  These advances interact – for instance, greedy merge implies the need to 

sometimes use automatically derived filters in the matching process – but to a first approximation they 

can be described independently.  Appendix A describes the new SME algorithm in detail, illustrating how 

these techniques work together and analyzing its overall complexity.   Complexity is a critical question: A 

central operation in cognitive processes must work in polynomial time, in order to account for the 

rapidity and scalability of human processing.  We return to this issue in Section 5. The rest of this section 

summarizes some psychological evidence for SME, and outlines how SME is used as a component in 

models for analogical retrieval and category formation, to illustrate the explanatory power of this 

model. 

SME’s processing account has led to several predictions that have been borne out in psychology 

experiments. Table 1 shows a set of benchmark phenomena that characterize analogical mapping 
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(Gentner & Markman, 1995;  Markman & Gentner, 2000). For example, there is considerable evidence 

that people prefer structural consistency, including 1-1 mappings, in analogical processing (Gentner & 

Markman, 2006; Krawczyk et al., 2004, 2005; Markman & Gentner, 1993b; Spellman & Holyoak, 1996). 

There is also evidence for systematicity: people prefer analogies that share deep systematic structure 

over matches that are otherwise identical, but that lack common higher-order relations linking the 

lower-order relations (Gentner, Rattermann & Forbus, 1993).  Systematicity also influences analogical 

inferences: people draw inferences from the more systematic to the less systematic of two analogs 

(Bowdle & Gentner, 1997) by projecting predicates connected to the common structure (Clement & 

Gentner, 1991).  

There is also evidence supporting SME’s local-to-global matching algorithm—specifically, that the first 

stage of comparison processing is an initial symmetric alignment process. Wolff and Gentner (2011) 

tested comprehension of strongly directional metaphors, such as “Some suburbs are parasites.” In 

untimed tasks, people strongly prefer “Some suburbs are parasites” to “Some parasites are suburbs.” 

However, if participants had to answer under deadline pressure (within 600 ms), they did not exhibit a 

directional preference: they found both versions equally comprehensible (Importantly, the mean 

‘comprehensible’ response was significantly greater than for scrambled metaphors, indicating that 

meaningful processing had been initiated.) By 1200 ms, there was a significant advantage for the 

forward direction. This is exactly what follows from an initially symmetric alignment process, assuming 

the deadline occurs during the first two phases of processing.  During this early alignment stage, we 

conjecture that people can have the sense that something promising is happening, even in cases where 

they will ultimately reject the comparison. 

Further psychological evidence for SME’s processing algorithm comes from investigations of difference 

processing. SME predicts an empirical disassociation in the response times for two seemingly related 



Running title: Extending SME 

14 
 

tasks: the same-different task, and a ‘name the difference’ task. A long-established finding is that in 

same-different tasks, people are faster to respond “different” for very dissimilar pairs than for similar 

(but nonidentical) pairs (Goldstone & Medin, 1994; Luce 1986; Posner & Mitchell, 1967). SME can 

capture this finding, as described below. But SME also makes a novel prediction: that if asked to state a 

difference between two things, people should be faster to do so for very similar pairs (Sagi et al 2012). 

This prediction rests on two prior findings.  First, there is abundant psychological evidence that when 

people are asked to state differences between two things, they are likely to name alignable 

differences—differences that play the same role in the common structure4 (Gentner & Gunn, 2001; 

Gentner & Markman, 1994; Kurtz & Gentner, 2013; Markman & Gentner, 1993a, 1996). By their nature, 

these differences emerge only after structural alignment is complete. Second, high-similarity pairs are 

faster to align than low-similarity pairs (Gentner & Kurtz, 2006). This also follows from SME’s process.  In 

high-similarity pairs, since most of the matches are compatible, there will be one or two large, dominant 

kernels. This means that the greedy merge process generally only needs to run once, since SME does not 

bother producing more than one mapping when there is little left over.  For low-similarity pairs, there 

are typically many small kernels, and the final step may require comparing two or more different 

merges. Thus alignment takes longer for low-similarity than for high-similarity pairs (all else being 

equal). Thus, naming a difference should be faster for high-similarity pairs than for low-similarity pairs. 

Now consider a same-different task. If two descriptions are completely different (i.e., the pair is very 

dissimilar), the size of the initial match hypothesis forest will be small compared to the size of the items. 

This means that the alignment process can be terminated at the first stage, resulting in an early 

                                                             
4 If the pair cannot be aligned, people will give nonalignable differences, typically by stating a fact about one item 
and denying it for the other. For example, for shopping mall/traffic light, responses included “A traffic light tells 
you when to go, a shopping mall doesn’t” and “You can go inside a shopping mall, you can’t go inside a traffic 
light.” We suggest that nonalignable differences (unlike alignable differences) do not naturally spring to mind in 
the course of comparison. 



Running title: Extending SME 

15 
 

‘different’ response.  But if the pair is highly (or even moderately) similar, such that the initial stage feels 

promising (i.e. the match hypothesis forest is large), then the alignment process cannot be aborted at 

Phase 1 and must be carried to the end.  SME thus predicts opposite patterns for these two tasks: faster 

responding for very similar pairs in a name-a-difference task, and faster responding for very dissimilar 

pairs in a same-different task. Sagi, Gentner & Lovett (2012) found exactly this pattern. To our 

knowledge, SME is the only simulation of similarity or analogy that can predict this pattern. 

SME has several attractive features as a cognitive model. As noted above, it operates in a parallel to 

serial manner 5, and can capture some essential properties of the comparison process, including 

abstraction, inference projection and alignable difference detection. It also matches findings on the 

ordinal time course of human comparison processes, as discussed above—such as the disassociation in 

the time course of difference processing (Sagi et al., 2012) and the fact that that high-similarity matches 

are processed faster than low-similarity matches (Gentner & Kurtz, 2006).  Most importantly, SME 

operates without advance knowledge of the point of the comparison—capturing the fact that people 

can happen upon a comparison with no advance idea of what it will yield, and discover a hitherto 

unnoticed common structure or a new inference. 

2.1 The Evolution of SME 
SME has evolved considerably since 1986.  For example, in the initial version of SME (Falkenhainer, 

Forbus & Gentner, 1989) we used different rule sets to process different match types—analogy, literal 

similarity, and mere-appearance (surface similarity). In terms of cognitive modeling, this amounts to the 

assumption that people process analogy with a different set (attending only to relations) than they use 

for literal similarity (in which attention goes to both relations and object attributes). But this has the 

disadvantage of having to postulate that people know in advance what kind of match they will be 

                                                             
5 The current implementation is serial, but parallel issues are also discussed in Appendix A. 
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getting—violating a prime goal of capturing spontaneous discovery. Moreover, such rule sets turn out to 

not be necessary (Forbus et al., 1994).  SME now runs in what used to be called literal similarity mode, in 

which it tries to match all types of predicates—attributes, functions and relations. Depending on what it 

finds to match, the comparison will be characterized as literal similarity, analogy, surface match, or 

anomaly, or as something intermediate.   

We further note that SME can be used with cases from a variety of different sources; it can process 

cases whether they were originally presented perceptually, given in text, retrieved from long term 

episodic memory, produced dynamically from semantic memory (Mostek et al., 2000), or derived 

through reasoning and problem solving (as the examples in Section 3 illustrate).  In larger models, it 

tends to be used in a map/analyze cycle (Falkenhainer, 1990), in which the results of a comparison are 

evaluated in a task-dependent way.  The models in Section 3 illustrate these ideas in the context of 

larger-scale cognitive tasks.  

A key principle in this work is that the basic similarity engine—SME—should be able to operate by 

default on its own, without external guidance. There are two reasons for this. First, comparison often 

occurs spontaneously. Although we sometimes compare things on command—for example, when we’re 

told that two things are analogous—it’s clear that the comparison process often occurs unbidden. For 

example, walking through a city, we generally aren’t looking for twins, but if twins should appear, we 

will notice their similarity.  This kind of “comparison-based interrupt” also happens at the conceptual 

level; noticing that two ideas are similar can be a source of insight. Indeed, there is evidence that 

comparison-based inference can happen even without our noticing it (Day & Gentner, 2007). A second 

argument for a relatively independent similarity engine is that comparison is ubiquitous in cognition, in 

arenas from decision-making to causal reasoning to categorization to perceptual learning. Although it’s 
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theoretically possible that different comparison processes are called on in each arena6, the many 

phenomenological similarities across areas suggest that the same basic comparison process is involved 

across a wide swath of cognition. This argues for a relatively modular similarity engine that can be used 

as a subprocess within more complex cognitive processes.  

2.2 SME as a component in retrieval and generalization 
Another piece of evidence that something like SME may operate as a general-purpose similarity 

operation is that it can be productively viewed as a sub-process in analogical retrieval and 

generalization.  We illustrate by briefly summarizing how SME is used in MAC/FAC, a model of analogical 

retrieval, and SEQL (and its newer incarnation, SAGE), a model of analogical generalization.   

MAC/FAC (Forbus et al., 1995) models similarity-based retrieval—the phenomenon by which a currently 

active representation reminds us of some prior similar situation. We model similarity-based retrieval as 

a fast, relatively indiscriminate process. This choice is motivated in part by information-level 

considerations (in Marr’s (1983) sense): this process must by its nature operate over large swaths of 

LTM, suggesting that it should be computationally cheap to carry out. A second rationale is the empirical 

fact that similarity-based retrieval is a hit-or-miss phenomenon—the retrieved instances are sometimes 

relevant to the current situation, but often they simply share some surface features. Yet, once the 

instance is retrieved, people can often show considerable discernment, rejecting their own retrievals if 

they lack structural similarity (Gentner et al., 1993). MAC/FAC uses a two-stage retrieval process to 

capture these phenomena. The first stage (MAC) uses a vector representation automatically generated 

from the structured representations in working memory and in long-term memory as a crude, fast 

search. These content vectors consist of the relative frequency of occurrence of the predicates and 

functions in the structured representation. Psychologically, this captures the fact that memory retrieval 

                                                             
6 This view is not unanimous: for example, Lee and Holyoak (2008) argue that causal analogies require a different 
mode of processing than other analogies.  
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is strongly influenced by content, and only weakly influenced by relational structure (Gentner et al., 

1993; Holyoak & Koh, 1987; Trench & Minervino, 2014). It also captures the idea that deliberate 

indexing is not necessary in order for retrieval to occur. Computationally, these vectors have the 

property that their dot product provides an estimate for the size of the match hypothesis forest that 

SME would produce for the corresponding structural descriptions.   We assume that the dot products 

are happening in parallel, and that the top few (up to three) structured representations corresponding 

to the winning vectors are passed on to the second stage.  The second stage (FAC) runs SME in parallel, 

comparing these structured representations to the current situation, returning one or more mappings as 

the result.  Studies comparing MAC/FAC’s retrieval patterns with those of humans have shown good 

ordinal match (Gentner, Rattermann & Forbus, 1993; Gentner et. al, 2009). 

SME is also used as a component process in models of analogical generalization.  SEQL (Kuehne et al. 

2000) used SME to compare incoming examples and assimilate them into ongoing generalizations.  A 

later version, SAGE (McLure et al. 2010), keeps track of frequency information about alignable 

structures, enabling it to produce probabilistic generalizations.  For example, if given a series of 

examples with the same category label, SAGE begins by storing the first input example. When the next 

example arrives, SAGE compares it to the first one, using SME. If there is sufficient overlap (that is, if 

SME’s score is above a pre-set threshold) the common structure is stored as a generalization. If the 

similarity to the abstraction is below threshold, the example will be stored separately. This process 

continues as new examples arrive; if new examples are sufficiently similar to the ongoing generalization, 

they are assimilated into it and the generalization is updated. New examples that can’t be assimilated 

into the main abstraction are compared to the set of examples; if a new example is very similar to a 

stored example, a new generalization is formed from their common structure. For example, suppose 

SAGE is given a set of items labeled ‘birds.’ If it receives the series sparrow, thrush, starling, finch, it will 

form an abstraction that we would recognize as songbird. If the next example of ‘bird’—say, a stork—is 
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insufficiently similar to the abstraction, then it will be stored as a separate example. This process allows 

SAGE to form similarity-based subclusters; for example, if a heron and egret were added to the bird 

category, SAGE will form an abstraction of tall, long-legged birds subsuming stork, heron and egret. 

The goal of using SME in models of realistic-scale cognitive processes brings up the crucial issue of scale, 

to which we turn next. 

3 Representation and Scale in Analogical Processing: Evidence from 
Cognitive Models 

One point of strong agreement among analogy researchers is the importance of representation in 

modeling analogy—in particular, the need for explicit representations of relations. Flat feature vectors, 

even if very large, have no way to capture the phenomena of relational matching and mapping (Gentner 

& Markman, 1993, 2006; Goldstone et al., 1991; Holyoak & Hummel, 2000; Markman, 1999; Sagi et al., 

2012).  In the early days of analogical research, this need was met by using hand-generated examples. 

Indeed, many prominent models of analogical processing have been tested only with hand-generated 

examples (e.g., ACME, LISA, DRAMA, CAB, DORA). SME has also been tested with such examples, 

especially in the early years (e.g., Gentner et al., 1993).  While considerable insight can be gained from 

experiments using such materials, they raise significant methodological concerns.  The most serious is 

tailorability—i.e., the degree to which a model’s results depend on representation choices that are not 

theoretically constrained, and chosen by the modeler (often unknowingly) to make the simulation come 

out in the way that they desire.  Tailorability is difficult to avoid in hand-coded representations, because 

many questions about the exact formats of mental representations are not yet strongly constrained by 

data.  For example, even though there is agreement that relations are important in human cognition, 

exactly which relations people use to represent a given situation is still an open question.  When hand-

coded representations must be used, tailorability can be reduced by using independent evidence as to 
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the likely representations when it is available, and by using uniform attested representational 

conventions otherwise.   

However, by far the best way to reduce tailorability is to use representations that are independently 

generated--either automatically generated (e.g., Falkenhainer 1990), and/or produced outside one’s 

laboratory (Forbus et al 1995).  In the last 20 years, although we have sometimes used hand-coded 

representations (e.g., Gentner et al., 2009), we have placed a high priority on testing SME with 

independently generated representations Automatically generated representations can be taken from 

other AI systems that are carrying out some task. In larger-scale systems that have SME as a component, 

SME’s representations can be produced by another part of the system itself, through interpreting 

natural language text (e.g., Dehghani et al., 2008b) or sketches (e.g., Lovett et al., 2009).  This has the 

advantage that in cognitive simulation, the materials given to the system are the same stimuli given to 

human subjects (Lovett et al., 2009; Sagi et al., 2012).   Below we describe tests of SME using 

automatically generated representations, including representations derived from perceptual input (See 

Section 3.1.1 and 3.1.2), representations taken from other AI systems, including a natural language 

system (Sections 3.1.3 and 2.1.5) and representations provided by another institution (Section 3.1.4). 

A further methodological concern is the adequacy of the representation—that is, whether it actually 

contains enough information to carry out the task(s) it is intended for.  When carefully evaluated, a 

running program demonstrates that there is at least one set of representations and processes that can 

be used to carry out the task—that is, it shows sufficiency (though not necessity).  Not all AI systems are 

intended as cognitive simulations, of course.  However, even systems that are not designed as 

simulations can still provide evidence as to what information content, and how much of it, is required 

for particular tasks—that is, they can bear on Marr’s (1983) information processing level of explanation. 

Another criterion for an adequate representation (beyond being able to support simulations that carry 



Running title: Extending SME 

21 
 

out the task being modeled) is that it can be used in other tasks that could reasonably be supposed to 

draw on the same representation. For any single process, the representations can be chosen so as to 

create the desired outcome.  Thus we agree with Cassimatis et al (2008) who argue that ability and 

breadth are crucial, but underutilized, criteria for evaluating cognitive simulations.  

A third methodological point is the Integration Constraint (Forbus, 2001).  This constraint arises from the 

claim that analogical mapping processes underlie many important cognitive processes. To make good on 

this claim, we need to test SME as a component of other realistic-scale cognitive processes, such as 

categorization or moral reasoning. The Integration Constraint states that a model of a cognitive process 

P should be usable as a component in models of larger-scale cognitive processes that are hypothesized 

to use P (Forbus, 2001).  Embedding a model within a larger system also reduces tailorability; if the 

representations are automatically constructed by other processes, and the results of analogical 

comparison are used by yet other processes, there are many more constraints on the representations 

than would be found in isolation.    

Thus, the properties of tasks impose constraints on models of component processes.   In the case of 

analogical mapping, one implication of this principle is that a model of analogical mapping must be able 

to handle the kinds of representations that arise in the tasks in which people use analogy.  Let us 

therefore look at representations used by larger-scale cognitive models that have used SME as a 

subprocess.  

3.1 Evidence from Five Computational Investigations 
Here we briefly summarize five previously published computational investigations that provide evidence 

about the kind of descriptions and number of relationships that models of analogy must handle.  In each 



Running title: Extending SME 

22 
 

case, SME was used as a component in a larger system.  Data were collected by recording the contents 

of SME during the running of the larger model and saving this information to files7.   

3.1.1 Geometric Analogies 
The first simulation of analogy was Evans’ (1968) ANALOGY program.  Fig. 7 shows two example 

problems from Evans’ original corpus.  These are problems of the form “A is to B as C is to…?” Running 

on an IBM mainframe, using punch cards as input, ANALOGY was able to automatically construct 

representations for half of the examples it operated over, a tour de force for that era.  The program 

used a transformation-based model, with separate domain-specific comparison processes to compare 

stimuli and to compute transformations between them.  However, despite multiple efforts to do so, 

until recently no model was built that could automatically encode these stimuli and successfully solve 

the same range of problems.   

Lovett and his collaborators (Lovett et al. 2009) showed that, using automatically constructed inputs, 

structure-mapping could be used to perform this task.  The figures for the problems were drawn using 

PowerPoint, and copy/pasted into CogSketch (Forbus et al. 2011), an open-domain sketch 

understanding system.  CogSketch automatically produces structured, relational representations from 

digital ink, and these were used as inputs to the system.  CogSketch computes a variety of qualitative 

spatial relationships, including positional relationships (e.g. above, leftOf), topological relationships 

(e.g. partiallyOverlapping, inside) and relative sizes.  Recognizing resizing and rotation of 

shapes was automatically performed by using a model of mental rotation, which in turn uses SME.  That 

is, SME was used to perform a qualitative comparison between two shapes, using an automatically-

constructed edge level representation, from which quantitative scaling and rotation relations, if 

                                                             
7 This kind of record (referred to as a “dehydrated SME file”) contains all of definitions of the predicate vocabulary, 
base, target, and SME correspondences and mappings needed to “reconstitute” the original results. This corpus of 
matches will be made publicly available upon publication of this paper. 
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appropriate, could be derived.  Thus even the original encoding of the stimuli involves the use of SME 

over automatically constructed representations. 

The original model (Lovett et al. 2009) used a two-stage comparison process.  That is, SME was used to 

compare A to B, and then SME was used to compare C to each possible solution in turn.  SME’s 

mappings were then compared to each other, again using SME (i.e. a second-order comparison).  This 

involved automatically reifying mappings and candidate inferences as assertions, for input to the second 

order comparisons. This process also identifies reversals and dimensional changes (e.g. leftOf in the 

A/B pair, versus above in a C/X pair).  Candidate inferences are computed in both directions, with the 

presence of analogy skolems indicating that an extra entity is in one of the descriptions.  A score is 

computed for each answer, based on SME’s structural evaluation score for the second order 

comparison, plus a penalty for extras, normalized to avoid size effects.  The choice with the highest-

scoring comparison with C is selected as the answer.   

An interesting complication is that SME’s initial mapping may not always be the best answer.  An 

executive process is used to automatically look at mappings other than the best8, if SME has produced 

more than one, and to consider whether to re-prioritize its interpretation of reflection versus rotation in 

comparing shapes.  Its default strategy is to prefer identity matches, followed by reflections, and then 

rotations.  But if a good solution is not found, it will also explore giving higher preference to reflections 

or rotations. Problems for which the default encoding strategy suffices to find an answer should be 

faster for people, since fewer comparisons are required, in contrast to problems which require 

backtracking and trying other strategies.  As predicted, a laboratory study indicates that people do 

                                                             
8 As discussed elsewhere, alternate mappings are only created if their structural evaluation is within 20% of that of 
the best mapping, with a maximum of three mappings. 
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indeed take longer on problems where the model predicts that backtracking is required (Lovett et al. 

2009). 

An extended model (Lovett & Forbus, 2012) added a second strategy based on constructing an answer 

by projecting the differences of the A/B comparison onto C, and then comparing the constructed answer 

to the alternatives.  Fig. 7(a) shows an example for which the projection strategy works, and Fig. 7(b) 

shows an example where second-order comparison is required (because the constructed answer is not 

one of the valid responses).  The combination of the model’s predicted strategy shifts and working 

memory load together account for most of the variance in human reaction times on these problems (R2 

of 0.95).  This model and the complete set of inputs is available for download9.  Working memory load 

was coded for by counting the number of elements involved in the difference computed for two 

geometric descriptions. We return to the issue of working memory below. 

3.1.2 Visual Oddity Task 
To explore possible cultural differences involving geometric reasoning, Dehaene et al. (2006) used a 

visual oddity task (Fig. 8), in which participants are instructed to select the odd image from a group of six 

images. They gave this task to two distinct groups: North Americans and the Mundurukú10 (a South 

American indigenous group). Overall, there was a high correlation in the performance of the groups, 

suggesting that some aspects of geometric reasoning may be universal.  However, there were open 

questions about how representations and reasoning might vary across the groups. To address these 

questions, Lovett & Forbus (2011) modeled human performance on this task, using a combination of 

SME and qualitative visual representations.   

                                                             
9 The model is embedded in the CogSketch executable.  Two sketches bundled with the distribution include the 
original Evans problems, and how to run the model is described in the documentation. 
10 The Mundurukú differ markedly in language and culture from Americans. For example, their language appears to 
have only a rudimentary system of numbers (Pica et al., 2004), and they have few terms for geometric figures 
(Dehaene et al., 2006).  
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Again using stimuli copy/pasted from PowerPoint, CogSketch was used to automatically construct initial 

representations and do rerepresentation as required by the model.  CogSketch incorporates three 

distinct levels of representation.  The object level is the default, consisting of relationships between 

entities.  The group level describes higher-level relationships between sets of objects, using gestalt 

principles of proximity and similarity (computed via SME).  The edge level segments a shape into its 

component edges and computes qualitative spatial relationships between the edges.  The model uses 

SME multiple times to determine what is in common with half of the images in a problem, and looks at 

the others to find if there is a noticeable dip in similarity.  This can require shifting levels of 

representation, if the default object level does not lead to an answer.  Fig. 8(a) shows a problem that 

can be solved at the object level, while Fig. 8(b) shows a problem requiring an edge-level representation.  

Out of 45 problems, the model correctly solved 39 of them, and the problems that it failed to solve were 

among those hardest for human participants.  Moreover, an ablation study suggested reasons for the 

differences between the two cultural groups found in the original study.  The behavior of the 

Mundurukú is consistent with a stronger focus on the edge level representation, whereas North 

Americans tended to focus on objects or groups of objects – perhaps an outcome of schooling.    

3.1.3 Solving textbook thermodynamics problems 
Problem solving is one of the signature roles of analogy in cognition.  To explore the importance of 

incremental mapping in problem solving, we built a very simple problem solver (MARS, Forbus et al 

1994), which had no built-in knowledge of engineering thermodynamics, but was capable of using 

analogies with previously solved problems to solve new problems.  The worked solutions were 

automatically generated by an AI system, CyclePad (Forbus et al. 1999), which has an expert-level model 

of the domain.  CyclePad solutions include explanations, in terms of how each value is derived in terms 

of others, including what equations were used.  These explanations were automatically translated to 

predicate calculus to be used as analogs for solving new problems.  Given a new problem, MARS 
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compared the problem to the analog it was given, and performed an initial mapping.  This initial 

mapping was used to import equations to be used in solving the new problem.  As newly derived 

information is added to the problem being solved, the mapping is incrementally extended, providing 

new candidate inferences with further potentially relevant information.   

We note that this is only one point in the spectrum of how analogy might be used in problem-solving 

(Gentner et al. 1997; VanLehn 1998). In this approach, the analogy is treated as a recipe for getting an 

onerous job done quickly. Although people do sometimes use analogy as a shortcut, this approach fails 

to take advantage of analogy as a learning mechanism. To capture the more ambitious use of analogy, 

we built a more extensive simulation of human textbook problem solving, which incorporated analogical 

retrieval to automatically find analogous worked solutions,  first-principles qualitative reasoning to 

provide a more robust initial understanding of the problem and the ability to import control decisions as 

well as equations via analogy.   Ablation experiments with this simulation that removed more expert-like 

aspects of performance (e.g. more rigorous encoding using qualitative models, validating analogy 

suggestions via reasoning, and using multiple retrievals) led to more novice-like behavior, providing 

evidence for these factors being among those underlying novice/expert differences (Ouyang & Forbus, 

2006).   

We include examples from the original model here, because it is sufficiently simple that its source code 

will run in any modern Common Lisp environment, enabling others to experiment with it more easily11. 

The more sophisticated model’s worked solutions are more or less equivalent in structure.   

3.1.4 Solving Advanced Placement Physics Problems 
The Educational Testing Service (ETS) runs Advanced Placement exams for high-school students in the 

United States.  These are high-stakes tests, since doing well on them can improve a student’s chances of 

                                                             
11 The complete source code for this model and representations will be made publicly available upon publication of 
this paper. 
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going to a top university.  Fig. 9 shows a typical example.  Students must ascertain which equations are 

relevant, solve them, and check whether their answer makes sense.  As an experiment, ETS trained and 

tested a Companion (Forbus et al 2009) on part of the Dynamics component of the AP Physics 

examination.  The relevance of this test for present purposes is that the Companion cognitive 

architecture12 makes the structure-mapping processes of comparison, retrieval, and generalization 

central to its operations.  The goal of the ETS experiment was to see if a Companion could, from worked 

solutions, rapidly transfer knowledge across the following six near-transfer conditions: 

1. Varying parameters. Changing the numerical values, but in small ways that do not affect the 

qualitative outcome (e.g. changing the height of the building to be 81 meters).  

2. Extrapolation. Changing the numerical values so much that the qualitative outcome changes 

(e.g. changing the height of the building to be 10 meters). 

3. Restructuring. Asking for a different parameter (e.g. how high will the ball be?) 

4. Distractors. Adding additional events that are irrelevant. 

5. Restyling. Changing the kinds of everyday objects involved in problems. 

6. Composing. Compound problems whose solution requires combining the results of solving two 

simpler kinds of problems. 

The problems involved were drawn from the types of problems found in the Dynamics portion of the AP 

Physics exam, such as deriving numerical values for a situation, producing the correct prediction of 

qualitative outcomes in a situation based on numerical values, and producing symbolic equations to 

characterize a situation.   

                                                             
12 More generally, the Companion cognitive architecture is exploring the hypothesis that analogical reasoning is 
central to cognition (Gentner 2003, 2010). It differs from other cognitive architectures in several ways, including 
that analogical matching, retrieval, and generalization are more primitive than back-chaining in its operations. 
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The representations for problems and worked solutions were generated by ETS.  ETS, with the help of 

Cycorp, modified their problem generation process to produce problems in predicate calculus, using the 

Cyc ontology (Matuszek et al. 2006).  In addition to producing problems, they also generated worked 

solutions, also in predicate calculus.  The level of information in the worked solutions was similar to that 

found in textbook explanations of how to solve physics problems.  Importantly, these explanations were 

not geared towards the workings of the Companions’ problem solving mechanisms—indeed, ETS had no 

knowledge of how those mechanisms worked.  Each step of a worked solution used the same general 

set of relationships—e.g. the relation solutionStepUses identifies assumptions and antecedents, 

solutionStepResult indicates the result of that step, and priorSolutionStep indicates the 

sequential relationship between two steps of the solution.  Thus each step requires multiple relations to 

encode, in addition to the relations involved in the antecedents and the result.   A typical problem can 

require eight or more steps. Thus, despite the relatively abstract nature of the ETS representations, the 

number of relationships needed to encode a worked solution is substantial.  

To make this a clear test of transfer ability, the Companion had knowledge of how to solve equations 

and a set of problem-solving strategies, but no prior knowledge of the equations of physics.  Its 

strategies included using MAC/FAC to retrieve prior analogs, looking first for a mapping between event 

structures similar to the problem it was facing.  If a prior analog involved a different kind of event (e.g. 

throwing instead of dropping), it rejected that reminding and tried again.  Candidate inferences were 

mined for equations and assumptions that could help it solve the current problem.  If it could not 

retrieve a relevant example, it gave up, and did not guess.     

All training and testing was done by ETS as follows. Two kinds of training sets were developed: 

 Initial training set: Five quizzes, consisting of four problems each. 
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 Transfer training set: Four quizzes, consisting of four problems each, designed to vary from an 

initial training set according to which of the six transfer conditions was being tested.   

After ETS quizzed a Companion, they gave it the worked solutions corresponding to those quiz problems.  

This built up the set of potential analogs that a Companion could draw upon.  Learning curves across 

each set were constructed by measuring the number of problems correctly solved in each quiz.  For each 

of the six conditions, the following protocol was used.  First, they administered an initial training set 

followed by a transfer training set (i.e. nine quizzes, 36 problems).  Then they wiped the Companion’s 

memory of its recent experiences, and ran just the transfer training set, to provide a baseline.  This was 

done five times for each transfer level, with novel problems used in each training set. 

The results were encouraging (Klenk & Forbus, 2009), in that by using MAC/FAC and SME, Companions 

were able to quickly transfer knowledge across all six conditions.  Moreover, their operation could be 

analyzed in terms of the analogy events (e.g. transferring a line from an example solution, checking 

transferred knowledge) that VanLehn (1998) found in human students (Klenk & Forbus, 2007). 

3.1.5 Moral Decision Making 
Cultural narratives have been identified as an important way in which people derive moral 

understanding about right and wrong behavior (Prasad, 2007; Weber & Hsee, 1999). The prevalence of 

such narratives suggests that they may serve as the basis for analogies to other moral situations. Indeed, 

Dehghani et al. (2009) have shown that analogical retrieval affects how moral stories are used across 

cultures. Based partly on prior research suggesting that decision-making often involves analogy 

(Markman & Medin, 2002), Dehghani’s MoralDM system (Dehghani et al. 2008a) provides a 

computational model of moral decision-making that relies heavily on analogical retrieval and mapping. 

The MoralDM model includes protected values (Baron & Spranca, 1997), sometimes called sacred 

valued, as well as utilitarian concerns.  Protected values are modeled via a qualitative order of 
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magnitude representation—that is, when protected values are present, normal utilitarian differences 

are lost in the noise.  The stories used in psychological experiments were hand-translated into a 

simplified English syntax, which was then automatically translated into relational representations via a 

natural language system (Tomai & Forbus, 2009).  While the stimuli are simplified in syntax, they involve 

quite subtle relationships.  For example, one simplified English scenario (based on Ritov & Baron, 1999) 

reads as follows: 

“Because of a dam on a river, 20 species of fish will be extinct.  You can save them by opening the dam.  

The opening would cause 2 species of fish to be extinct.” 

Notice that this involves several kinds of events (e.g. extinction, opening), numerical quantification (e.g. 

that there are two groups of species with different cardinalities) and a counterfactual (e.g. “would 

cause”).  A strictly utilitarian view would lead to opening the dam, but if directly causing extinction of a 

species by one’s actions is a protected value, then inaction would be preferred. MoralDM uses a 

combination of first principles and analogical reasoning to work through moral dilemmas.  If there are 

no protected values in a scenario, it looks at the relative utility between the two choices and makes the 

best choice (i.e. fewer people dying, fewer species of fish becoming extinct).  On the other hand, if the 

highest-utility choice involves taking an action that violates a protected value (i.e. taking an action that 

will directly cause an extinction), consistent with most participants in these experiments, it prefers 

inaction to action.  In addition to reasoning from first principles, MoralDM also uses SME to look for 

actions that violate protected values.  These methods complement each other, since the rules used for 

first-principles reasoning are incomplete.  MoralDM makes choices that are compatible with the 

majority choices made in multiple experiments (Dehghani et al. 2008a).  Moreover, as the size of the 

case library grows, the proportion of correct responses improves (Dehghani et al. 2008b), demonstrating 

that the use of analogy matters in the model’s performance. 
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3.2 Implications for Scale of Analogical reasoning 
Table 2 summarizes the properties of the representations used in the experiments above.  While this is 

only a small sample of the set of possible tasks, it includes very different kinds of tasks (visual reasoning, 

textbook problem solving, and moral reasoning), providing a look at how properties of representations 

might change across different domains.  Table 3 summarizes the statistics of the representations13. 

One thing that stands out in Table 3 is the large size of the representations. These statistics suggest that 

in order to model human performance over this range of tasks, the analogical mapping process must be 

able to handle between 10 and 100 relations. Of course, these representations may be larger than is 

needed. Our priority has been to use automatically generated representations, from systems developed 

both in our laboratory and by others.  Such systems tend to optimize for compact representations, given 

that large representations tend to raise the cost of other operations as well.  However, there is no 

guarantee that they are the most compact possible representations.  But even if our representations are 

two or three times larger than needed, this still leaves us with 20 or 30 relations for some kinds of 

problems. How do these figures square with current estimates of online processing capacity?  

Let us first consider the case when external representations are present, such as in a geometric analogy 

problem.  In these cases, people may match large descriptions incrementally, relying on the external 

representations to relieve the working memory burden. This would be consistent with the incremental 

matching techniques discussed above. Of course, even in this case, people would still have to internalize 

enough of the ongoing mapping to be able to accurately maintain structural consistency across the 

solution steps.  

 

                                                             
13 For the AP Physics experiment, we include only a subset of the problems, i.e. those for one transfer condition.  
This is due to the large number of quizzes in that experiment. 
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But what about cases in which no external representation is present, as in comparing a current situation 

to a representation in LTM? This brings us to the critical issue of working memory. In some accounts, 

working memory (WM) is synonymous with short-term memory (STM), as assessed in tasks such as digit 

span. STM is primarily concerned with short-term information storage and is subject to temporal decay 

and capacity limits of around 4 chunks at best (Cowan, 2001).  Clearly, limits implied by equating WM 

with STM are difficult to square with our representational assumptions. However, some recent theories 

have emphasized the role of WM in holding and manipulating information, including information from 

LTM (Baddeley, 2012;  Ericsson & Kintsch, 1995).  For example, Ericsson and Kintsch (1995) propose a 

distinction between ST-WM and LT-WM. The former is the traditional STM, characterized by strict 

temporal and chunk capacity limits. In contrast, LT-WM is concerned with accessing and manipulating 

information in LTM, and varies with people’s knowledge and skill.  Ericsson and Kintsch review evidence 

from studies of text comprehension that shows that readers are able to temporarily retain and use 

amounts of information that are far larger than typical STM limits. Moreover, this temporary store is 

durable in the face of brief interruptions.  Baddeley (2012) agrees that interactions with LTM could 

boost WM performance, and maintains that this kind of interaction is compatible with current 

conceptions of WM14. 

In any case, the important point is that Ericsson and Kintsch’s comprehensive review shows that domain 

knowledge is an important determinant of effective WM capacity.  They review a wide array of evidence 

from studies of experts (in chess, bridge, abacus calculation and even waiting on tables), showing that 

the amount of material a person can retain and manipulate over short periods is far greater in their 

                                                             
14 “Ericsson & Kintsch (1995) proposed this concept [long-term working memory] in explaining the superior 
performance of expert mnemonists, going on to extend it to the use of semantic and linguistic knowledge to boost 
memory performance. They argue that these and other situations utilize previously developed structures in LTM as 
a means of boosting WM performance. I agree, but I cannot see any advantage in treating this as a different 
kind of WM rather than a particularly clear example of the way in which WM and LTM interact.”  (Baddeley, 2012, 
p. 18). 
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domain of expertise than in other arenas.  They also review evidence concerning “everyday expertise” 

— that is, people’s ability to encode and retain meaningful text—which shows that the amount of 

information people can temporarily retain when processing meaningful text is far larger than would be 

expected from most estimates of capacity limits (and much larger than when processing scrambled 

text). As they put it, “Domain knowledge provides the retrieval structures that give readers direct access 

to the information they need when they need it. Given a richly interconnected knowledge net, the 

retrieval cues in the focus of attention can access and retrieve a large amount of information.” (Ericsson 

& Kintsch, p. 231).   

Ericsson and Kintsch’s point that domain knowledge vastly influences the effective capacity of WM 

accords with work in analogy, which has shown repeatedly that the nature and quality of domain 

representations is a key determinant of how people process analogies.  In particular, Ericsson and 

Kintsch’s emphasis on “richly interconnected knowledge” is consistent with studies showing the 

importance of systematicity—the presence of higher-order relations15 that connect lower-order 

relations—in allowing people to carry out large analogical mappings (e.g., Gentner & Toupin, 1986; 

Loewenstein & Gentner, 2005).  A well-structured domain representation has at least two advantages 

for analogical processing: (a) it may be treated as a few higher-order nodes and unpacked into more 

detailed structures as needed; and (2) it may permit incremental processing, because the connecting 

relations allow the person to keep track of where they are in processing a large representation. 

 

                                                             
15 The exact set of linking relations that provides coherence is an open question. Ericsson and Kintsch (1995) 
discuss six classes of coherence elements proposed by Givón (1992): referents, temporality, aspectuality, 
modality/mood, location, and action/script. Gernsbacher (1997) proposes the coherence can arise from (at least) 
referential, temporal, locational, and causal links. Researchers in analogy have emphasized causal relations 
(including PREVENT and ENABLE) as well as logical relations such as IMPLIES and higher-order spatial relations such 
as MONOTONIC-INCREASE. 
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Such higher-order structure might operate much like the large-scope chunks in cognitive architectures 

such as SOAR (Laird, 2012) and ACT-R (Anderson, 2007).  If so, then the capacity limit may be the 

number of coherent substructures, rather than the number of individual predicates.  The assumptions 

concerning working memory in the visual processing models, where the objects mentioned in the 

differences were counted as working memory, rather than the relations involving them, is compatible 

with this approach.   

4 Techniques for Scaling Up Analogical Processing 
This section describes five techniques that we have found crucial for scaling up analogical processing, in 

the investigations above as well as others: Greedy Merge, incremental operation, ubiquitous predicates, 

structural evaluation of candidate inferences, and match filters.  We discuss each in turn. 

4.1 The GreedyMerge Algorithm 
Recall that in SME’s local-to-global algorithm, local matches are first constructed in parallel, and kernels 

(structurally consistent combinations of matches starting from non-subsumed match hypotheses) are 

subsequently combined to form the correspondences of a global mapping.  In our first two versions of 

SME, we used an exhaustive merge process to find all globally consistent solutions.  While guaranteed to 

find optimal solutions, the worst-case performance of such an algorithm is factorial in the number of 

kernels.  Clearly a more efficient search technique is necessary for structural alignment to be widely 

used as a process within realistic-scale tasks. 

Our solution has been to trade off optimality for performance, by using a greedy algorithm for merging.  

The essence of a greedy algorithm is this: Suppose one has a set of partial solutions, only some of which 

are mutually consistent with each other, which must be combined into the best possible global solution.  

In general this is an NP-hard problem, i.e., requiring exponential growth in resources as the size of 

descriptions grows, because one must try all combinations of partial solutions together to guarantee 
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optimality.   What a greedy algorithm does instead is to select the best partial solution, add to that the 

next-best partial solution consistent with it, then the next-best partial solution consistent with those 

two, and so on, until nothing else can be added.  This algorithm is linear in the number of partial 

solutions, and yields optimal (or near optimal) answers surprisingly often, as discussed below. 

The greedy idea is applied to building mappings in SME as follows:  Kernels are the partial solutions, and 

are rank-ordered by their structural evaluation, i.e., the sum of the structural evaluations of the local 

match hypotheses included in them.  The first interpretation is created by starting with the structurally 

largest kernel and going down the list, merging kernels with it that are not structurally inconsistent with 

the solution being generated.  SME can generate more than one global mapping by selecting the 

highest-ranked remaining kernel and starting the process over again.  The maximum number of 

interpretations returned is a parameter of the simulation, and defaults to three.  There is also a cutoff 

percentage, such that if a subsequent kernel is going to be significantly smaller than previous solutions it 

is not generated.  Thus when there is only one “obvious” mapping, only one is produced.  But if there 

are competing interpretations, up to two additional mappings will be produced as well. 

We have subsequently improved on the simple greedy merge algorithm reported in Forbus & Oblinger 

(1990) in two ways.  First, we divided the merge process into two steps.  The insight is that, since 

candidate inferences only arise when base statements are imported in the target, merging kernels that 

project to a common base root increases the likelihood of finding productive matches.  Thus we first 

perform a greedy merge operation within kernels whose base projection shares a common root, and 

then a second round of greedy merging over those solutions to construct mappings.  Second, we allow 

mappings to share kernels.  The original greedy algorithm placed each kernel in at most one mapping. 

However, it is theoretically possible for distinct mappings to share some matches, and thus some 

kernels.  To support this, after a mapping is greedily computed, the algorithm iterates over all kernels 



Running title: Extending SME 

36 
 

from previously computed mappings. If any kernel is consistent with the current mapping, it is added to 

it.  This allows secondary mappings to be better filled out, and because it requires only a single pass 

through the previous mappings, it adds minimally to the computational cost. Appendix A provides a 

complete description of the current GreedyMerge algorithm. 

How good are the solutions produced by the greedy merge algorithm?  As reported in Forbus and 

Oblinger (1990), a simple version of GreedyMerge was originally tested on 56 analogies, ranging from 

comparisons between physical phenomena, short stories, and object descriptions, drawn from a library 

of SME examples.   We found that greedy merge produced the identical best mapping to the original 

exhaustive merge in 52 of these cases, i.e., 93% of the time.  The few cases where its results were 

suboptimal involved a number of large and mutually inconsistent initial kernels.  We discuss some 

subsequent similar analyses by other researchers in Section 6.   

Why does GreedyMerge normally do so well?  Typically, analogies over large descriptions have a few 

large kernels, only some of which are mutually inconsistent, and a much larger set of small kernels.  Thus 

the first few decisions are the really critical ones, and they are relatively easy to make.  When does 

GreedyMerge fail?  There are two kinds of cases where it can fare poorly.  The first is when there are 

many large kernels with a high degree of mutual inconsistency. In this case, a large number of decisions 

have to be correct, and hence the chance of error grows.  This was the problem in the few cases in our 

original experiments (4 out of 56) in which a non-optimal solution was generated.  We have also seen 

non-optimal solutions in practice, particularly when applying SME to large visual representations of 

diagrams (e.g. Ferguson & Forbus 2000).  There are two solutions to this sort of problem.  The first is to 

increase the number of interpretations one is willing to consider, or prune the set of possibilities via 

filter constraints, as discussed in Section 4.5.  The second is to change the algorithms used to generate 

representations, to introduce more relevant structure.  
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Another kind of case where, in principle, Greedy Merge would do poorly is that in which an initial, large 

kernel is inconsistent with every member of a large set of small but mutually compatible kernels that 

together outweigh the initial one.  We have not yet observed this phenomenon in natural 

representations.  Fortunately, the ability to generate radically different interpretations provides the 

potential to recover from such problems. 

The theory of submodular functions provides some useful insights.  A submodular function can be 

thought of as an evaluation function such that the value of adding an additional component to a solution 

decreases as the size of the solution increases (Cormen et al. 2009).  Greedy algorithms are optimal 

when their evaluation function is submodular, a global optimum can be arrived at by selecting a local 

optimum (the greedy choice property) and an optimal solution contains optimal solutions to 

subproblems (the optimal substructure property).  Unfortunately, as the cases above illustrate, 

structural evaluation is not always submodular; hence we know that GreedyMerge cannot always be 

optimal.  However, this can be turned around. It seems possible that human representations are tuned 

such that structural evaluation tends to be submodular, and when it isn’t, that is a signal for 

rerepresentation.  A related question is whether there is a set of broad representation conventions over 

which GreedyMerge is always optimal. These are currently interesting open questions. 

4.2 Incremental Operation 
Many perceptual and cognitive tasks involving structural alignment, including metaphor understanding, 

problem solving, and learning, require the ability to process information incrementally. For example, 

when processing an extended analogy or metaphor, readers often build up correspondences across 

several sentences. This means that each sentence must be linked to the relational structure that has 

been built up so far. One indication that this happens is that people experience a ‘mixed metaphor’ 

startle when the metaphoric mapping changes in midstream, as in “The ship of state is boiling over.” To 

test the idea that people often maintain consistent mappings, Gentner et al. (2001) gave people 
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passages containing extended metaphors, one sentence at a time (See Table 4). The dependent measure 

was the time required to read each sentence. As predicted by the incremental mapping assumption, 

people took longer to read the final sentence in the Inconsistent case than in the Consistent case. (See 

also Gentner & Boronat, 1991; Gentner, Imai & Boroditsky, 2002; Thibodeau & Boroditsky, 2011; 

Thibodeau & Durgin, 2008).   

In problem solving, students using a worked example to solve a related novel problem may go back and 

forth between them, seeking additional ways to interpret the new problem in light of the old.  In 

conceptual change, new data can lead to analogies being modified or abandoned.  Modeling these 

processes requires the ability to incrementally extend a match with new information.  Burstein (1986) 

was the first to computationally model incremental processing in analogical learning, in a domain-

specific system for modeling learning to program.  Falkenhainer’s (1987, 1990) PHINEAS demonstrated 

that SME could be used in a map/analyze cycle to model the incremental use of analogy in discovering 

physical theories, albeit with a number of external mechanisms.   

The first general-purpose incremental analogical matcher was Keane’s IAM (Keane & Bradshaw, 1988).  

A critical difference between IAM and the technique we have developed for SME concerns serial versus 

parallel processing.  Recall that in SME, processing is essentially parallel within the first two stages: only 

the final step of constructing global mappings is serial. By contrast, IAM is serial throughout: Even 

decisions about local matches are made sequentially, so that exploring alternate interpretations 

requires backtracking.  SME avoids backtracking by creating, in parallel, a network representing all local 

identity matches between items, followed by intermediate clusters (i.e., kernels, introduced in Section 2 

and described formally in Appendix A). 

We believe that a combination of initial parallel processing and later serial processing will best model 

human structural alignment processes.   Some serial processing is essential: One cannot combine all 
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information in parallel when not all of it is yet available.  However, we believe the fully serial approach 

of IAM would be difficult to scale up to cognitively plausible representations. Moreover, as noted above, 

there is now evidence that something like SME’s initial symmetric alignment process occurs in human 

processing, even for strongly directional metaphors (Wolff & Gentner, 2011).  

We suggest that the natural place for serial processing is in the Merge step. The kernels represent 

coherent, structurally-consistent collections of local matches, and therefore form a more appropriate 

unit of analysis for limited-resource serial processing than the individual local matches themselves.  

When base and target share large systematic structures, the number of kernels is small.  Serial, capacity-

limited merging of kernels could thus provide a plausible explanation for the “More is Faster” 

phenomenon whereby additional shared knowledge can improve both the rapidity and the accuracy of 

mapping (Gentner & Rattermann, 1991; Loewenstein & Gentner, 2005). 

The constraint of incremental operation changes the processes of a matcher in several ways.  The 

default operation becomes extending the current set of mappings when new information is added to 

the base and/or target, instead of starting from scratch.  However, one possibility raised by extending 

existing mappings is that what looked promising initially might turn out to be sub-optimal as more 

information is known.  Thus the matcher must have the ability to remap, that is, to take a fresh look at a 

comparison.  SME does this by discarding the existing mappings and redoing the Merge operation from 

the set of kernels.   We assume that the criterion for remapping is task-specific; hence there is no 

automatic criterion for remapping built into SME.  The problem solver described in Section 3.1.3 uses 

incremental mapping, for example, since the problems can be quite large. 

4.3 Ubiquitous Predicates 
For purposes of matching, not all statements are created equal.  Some researchers have suggested 

identifying specific “important” predicates, such as CAUSE, and focusing on those in matching (e.g., 
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Winston, 1982).  The problem with identifying certain predicates a priori as important is that it reduces 

the ability of a match process to be context-sensitive.  While causality may be critical in some tasks, such 

as story understanding, other kinds of knowledge may be critical in different tasks, e.g. spatial 

configurations in navigation.  Moreover, if CAUSE is given extra weight, would this also apply to 

PREVENT and ENABLE, not to mention AID, ABET, HAMPER and so on?  Structure-mapping’s 

systematicity principle suggests that importance arises from consideration of the size and depth of the 

overlapping structure between two descriptions, not as a purely local judgment.  Moreover, encoding 

processes that produce the inputs to matching are presumably tuned to what is important in the current 

context, and what is stored in long term memory and subsequently retrieved is also.  Thus we suggest 

that predicate-specific heuristics for judging a statement to be important are neither necessary nor 

sufficient to ensure optimal matching. 

Perhaps surprisingly, the reverse turns out to sometimes be very useful:  that is, using a local, predicate-

level heuristic for judging a statement to be unimportant—that is, as unlikely to yield useful matches in 

itself, can greatly simplify the match process.  In many domains, there are predicates that occur so 

frequently that the likelihood of any particular match involving them being useful is low.  For example, 

using analogy to solve thermodynamics problems (Section 3.1.3) can involve matching descriptions that 

each contain many equations.  Each equation could potentially match (because they all involve the 

predicate =), but most of them will be irrelevant.  Another example is the conjunctive connective, and, 

which is crucial for bundling antecedents together, but is not, on its own, sufficient reason to attempt to 

form matches.  Matches only based on = or and are unlikely to be useful.  On the other hand, one 

cannot simply filter such statements out; they are central components of the domain knowledge.  

Indeed, matching the appropriate pair of equations can be essential for solving a problem.   
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In any local-to-global process, having a large number of irrelevant local matches reduces the likelihood 

of finding strong overall matches.  The problem, of course, is that it is impossible to be certain when 

comparing two statements locally that they will not be useful, since (by systematicity) usefulness arises 

as a property of an overlapping system of relations.   

Our solution to this dilemma is to declare certain predicates common in a domain to be ubiquitous.  A 

ubiquitous predicate is a predicate which, by itself, does not constitute a sufficient condition to 

postulate a match between two statements that share it.  Which predicates are to be treated as 

ubiquitous is provided as part of the input to the match process, automatically, by the larger-scale task 

model on a domain-wide basis. The only difference in how ubiquitous predicates are treated occurs in 

the initial match hypothesis construction step.  In that step, every pair of expressions is compared and, if 

they satisfy tiered identicality, a match hypothesis is created – unless the predicates are ubiquitous.  If 

the predicates are ubiquitous, the pair is ignored at this step.  However, the pair can still appear in a 

match hypothesis if they are arguments of other statements that are matched.  Thus, for example, the = 

relations in pairs of equations that play similar roles in an explanation or problem solution will have a 

match hypothesis created for them, by virtue of them being part of the aligned argument structures.  

Thus statements involving ubiquitous predicates cannot be matched on their own, but can be matched 

as part of a larger matching structure, thereby satisfying the demands of systematicity and parallel 

connectivity. 

The choice of which predicates should be declared ubiquitous must be made with respect to the 

domain(s), independent of the demands of specific matching tasks or specific problems within the 

domain.   This is an important point theoretically, since it reduces the potential for tailorability in 

modeling that would be introduced if such decisions were made on an example-specific basis.  There are 

two general guidelines for using ubiquitous predicates in SME-based models: 
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1.  Predicates that are basically “joints” in larger structures are not sufficient evidence, by 

themselves, to warrant matches.  Examples include and, TheSet, and TheList.  On the other 

hand, predicates like cause and implies, despite their high frequency, should never be 

declared ubiquitous because these form the potential backbone and connective tissue of 

relational structures.   With them, the relevant joints can be found. 

2. Attributes that are shared by most elements of two descriptions are also good candidates for 

being declared ubiquitous.  For instance, in the representations for sketches used in (Forbus et 

al. 2011), every depicted object has an associated glyph.  Consequently, the attribute of being a 

glyph is not diagnostic for matching two sketches, whereas spatial relationships involving the 

glyphs and domain attributes of the objects depicted typically are.  

How important are ubiquitous predicates?  We illustrate by examining the use of ubiquitous predicates 

in the five computational investigations outlined in Section 3.  Table 5 describes what ubiquitous 

predicates were used in the SME comparisons performed in each domain.  No ubiquitous predicates 

were used in the two visual tasks because the encoding processes for those models automatically filters 

out the Glyph attribute, which is reasonable because it plays no role in higher-order relations. 

To see how ubiquitous predicates affect performance, Table 6 shows statistics on the increased size of 

the match hypothesis forest for each domain where ubiquitous predicates are used.  While ubiquitous 

predicates had little effect in moral decision-making, they had significant impact on the size of the 

representations for the problem-solving experiments.  This is because in the problem-solving domains 

most new steps introduce a new equation, so there are potentially many unproductive local matches 

there.  On the other hand, in moral decision-making, the stories are short, making the representations 

smaller, and there is little repetition among the relations used.   
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4.4 Structural Evaluation of Candidate Inferences 
Candidate inferences can be evaluated along several dimensions.  One such dimension is structural 

quality, and since the comparison operation is based on structural properties, it is the natural place for 

such evaluations to be computed.  (By contrast, utility or logical validity are properties that are task-

specific, and therefore outside the comparison operation.)  This section describes how SME performs 

structural evaluation of candidate inferences16.  Structure-mapping theory defines analogical inferences 

as projections from the base to the target that are structurally supported by the correspondences of a 

mapping. It also defines reverse candidate inferences from the target to the base, which are also now 

supported by SME.  The ideas in this section apply equally to forward and reverse candidate inferences.   

To begin with, we need a little more terminology.  Recall that candidate inferences for a mapping are 

generated by examining how either the base or target intersects the mapping.  We call a statement a 

root in a description if it is not the argument of any other statement in that description.  Recall that a 

match hypothesis indicates a potential correspondence between two statements or two entities in the 

descriptions being compared.  The arguments of a match hypothesis are the match hypotheses that 

align the arguments of the statements which that match hypothesis aligns.  Thus if we had 

MH1: (connectedTo A B)  (connectedTo C D) 
MH2: A  C 
MH3: B  D 

Then MH1 would have two arguments, MH2 and MH3.  By analogy with roots in a description, a match 

hypothesis is a root if it is not an argument in another match hypothesis.   

Consider a statement that is a root of its description.  If it participates in the mapping, i.e. there is a 

match hypothesis aligning it with a statement in the other description, then it is part of the overlap 

between the two descriptions, and can provide no additional new information.  But if a statement that is 

                                                             
16 This summarizes and extends the presentation in Forbus et al. (1997). 
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a root is not part of the mapping, but it has subexpressions that are, then a candidate inference is 

computed, to represent the projection of that potential new information into the other description.  In 

Fig. 2, for example, there are two qualitative proportionality statements (qprop+ and qprop-) which 

express causal relationships between continuous parameters.  Both of these statements are roots of the 

base.  The qprop+ statement indicating that the frequency of the oscillation is positively affected by the 

spring constant participates in the mapping. By contrast, the qprop- statement indicating the causal 

connection between the frequency of oscillation and the mass of the block, being an unmapped root 

with sub-expressions covered in the mapping, serves as a starting point for generating a candidate 

inference.  Similarly, since the cause statement, the block and spring statements, and one of the 

part-of statements are all roots, they too are used to create candidate inferences.  The form of the 

inference is the root expression, with substitutions made as necessary from the correspondences, and 

with skolem functions introduced for base constants that do not have correspondences.  This example 

has one skolem—namely, that the Earth is made of something like steel (i.e., (:skolem steel), in Fig, 

5).     

Once candidate inferences are generated, how are they to be evaluated?  One aspect of evaluating 

candidate inferences is validity—that is, using other types of reasoning to find out if they are in fact true 

or false in the target domain.  However, this can be expensive, so it is worth providing some estimate of 

the properties of the inference based on the structural alignment, to serve as a guide to other 

processes.   

The structural evaluation of a mapping provides an estimate of match quality, based on the nature of 

the overlap.  We suggest that a similar structural evaluation occurs psychologically for candidate 

inferences.  However, for candidate inferences we postulate two distinct dimensions: 
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1. Support: How much structural support does an analogical inference derive from the mapping 

that generated it?  We estimate this by using the same trickle-down algorithm used in structural 

evaluation, but limited to the subset of the correspondences that support the inference in the 

mapping. 

2. Extrapolation: How far does an analogical inference go beyond the support lent by the 

mapping?  We estimate this by using the structural evaluation trickle-down algorithm within the 

candidate inference, taking the ratio of the score for the structure outside the mapping over the 

sum of the score for entire inference (i.e. inside and outside). 

The methods for computing these scores are described in more detail in Appendix A. 

We believe these two measures have significantly different functional roles. Support is like the structural 

evaluation of mappings: More is always better. Extrapolation is more complex: High extrapolation seems 

desirable in tasks like brainstorming or theory generation, but low extrapolation may be preferable for 

within-domain comparisons involving highly familiar situations.  

That people are able to identify which inferences follow from a given set of correspondences has been 

demonstrated experimentally (Clement & Gentner 1991; Spellman & Holyoak 1996). For example, 

Markman (1997) found that analogical inferences follow structural consistency, even when there are 

multiple possible mappings (see also Clement & Gentner, 1991).  Our model of candidate inferences, 

which only computes them from structurally consistent mappings, is consistent with these results. 

Our definition of support score is consistent with several lines of evidence. Psychologically, matches 

involving larger systems of statements are viewed by subjects as more sound (Gentner et al., 1993). As 

noted above, Clement & Gentner (1991) showed that subjects made predictions based on statements 

connected to a common antecedent in the base, and that candidate inferences connected to systematic 

base structures are preferred to those which are not. 
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Similarity has been suggested as a central process in induction tasks (Heit & Rubenstein, 1994; Lassaline 

1996; Osherson et al. 1990), so it is useful to see how this model fits with these studies.   Lassaline 

(1996) asked subjects to rate the similarity of pairs of fictitious animals and the inductive strength of a 

property inference (i.e., if A has X, W, and Z, and B has X, Y, and Z, how likely is it that A has Y?, where A 

and B were fictitious animals and the rest of the variables were filled in with properties such as “dry 

flaky skin” or “attacks of paranoia”).  Adding a relation in the base that explained the inferred property 

(i.e., telling the subjects that in B, X causes Y while leaving the description of A unchanged) increased 

inductive strength, but adding a relation that was not connected to the inference did not.  A simple 

model of this task is to treat it as analogical mapping, with animal B serving as base and animal A as the 

target, and treating inductive strength as a function of the candidate inference support score.  Using 

these assumptions, a simulation of her experiments using SME also yields this result (Forbus et al 1997).  

Because of the systematicity principle, when there are multiple possible inferences from the base to the 

target, SME predicts that the inferences will be governed by where the greatest structural commonality 

can be found. This fits with findings by Heit and Rubenstein (1994), who found that people make 

stronger inferences about whether one animal has a property based on another animal’s having it when 

the kind of property to be inferred (anatomical or behavioral) matches the kind of similarity between 

the animals (anatomical or behavioral).  For instance, people judge the likelihood that whales travel 

shorter distances in extreme heat to be higher when told that tuna do, relative to when they are told 

that bears do, presumably because whales and tuna have greater behavioral overlap (both swim)--even 

though whales and bears match better anatomically (both mammals).  These findings are consistent 

with the prediction that people prefer to make inferences with greater support from the common 

structure. 
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4.5 Match Filters 
One strength of SME is that it can detect unanticipated structural correspondences. This is essential for 

capturing the generativity of human analogical reasoning.  However, some tasks impose particular 

constraints on analogies.  When reading an explanation of the greenhouse analogy for warming in the 

Earth’s atmosphere, for example, the reader’s interpretation of that analogy must include a 

correspondence between the greenhouse glass and the atmosphere.  Particular correspondences are 

often specified in instructional analogies (Barbella & Forbus, 2011; Richland, Zur, & Holyoak, 2007). For 

example, when learners are given the hydraulic analogy for electricity, they are typically told the 

correspondences (water flowelectric current, pressurevoltage, etc.)  Further, in learning a new 

domain by analogy, e.g. understanding how to solve rotational dynamics problems by analogy with 

linear dynamics problems, the mapping between the domains is often built up incrementally across 

multiple problems (Klenk & Forbus, 2013).  These incrementally constructed domain mappings are then 

used in new analogies when solving problems that extend the system’s understanding of the domain. In 

other words, the nature of some tasks require adding additional constraints that the matching process 

needs to respect.   

Since SME is only generating one to three mappings, tasks need to be able to communicate constraints 

to SME, to influence it towards more useful matches.  Match filters provide a restricted language for 

that communication.  Match filters are local, based on structural properties of the representation 

system.  By default, SME uses no filters.  Importantly, when filters are used, they are automatically 

imposed by the task model, never by hand. 

There are three kinds of match filters.  The first is the required correspondence filter: 

 (required Bi Ti): Any mapping that includes a correspondence for either Bi or Ti must map 
them to each other.  
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The required filter is useful when the task imposes correspondences, as in the electricity-water 

analogy above, or when a speaker declares that “fume hoods are like vacuum cleaners” in an analogy 

intended to be used by learners (Barbella & Forbus, 2011). They are also used to establish persistent 

cross-domain mappings (Klenk & Forbus, 2013).  We note that required constraints are sometimes 

used in large-scale models, including some of those in Section 3. 

Something similar to the required filter was first used in PHINEAS (Falkenhainer 1987).   PHINEAS 

learned new qualitative models for domains by first comparing a novel behavior to an understood 

behavior.  The analogy between the behaviors introduced correspondences that were used in a second 

mapping, with the explanation of the first behavior as the base, and the (initially empty) explanation of 

the novel behavior as the target.  The correspondences found in the first mapping were required to hold 

in the second mapping, which provided the necessary translation of terms to enable the importation of 

the explanation (as a set of candidate inferences) into the new domain. 

The second kind of filter is excluding a pair of correspondences: 

 (excluded Bi Ti):  No mapping can include a correspondence between Bi and Ti. 

In many tasks, SME is used iteratively – a mapping is generated, inspected by the larger model, and if 

the mapping is unsuitable, it must look for another.  For example, solving geometric analogy problems 

sometimes requires backtracking and looking for an alternate mapping between two images (Lovett et 

al., 2009).  Hence excluded constraints serve a role analogous to nogoods in truth-maintenance 

systems (Forbus & de Kleer, 1993), encoding information about correspondences that, while structurally 

sound, have been found to be inappropriate for other reasons.   

The final kinds of filters are predicate filters: 

 (identical-functions):  No mapping can include correspondences between non-identical 
functions.  This overrides the usual policy of letting non-identical functions match whenever 
suggested by a larger relational structure. 
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 (require-within-partition-correspondences Att1 Att2): No mapping can include 
correspondences that map an entity with attribute Att1 to an entity with attribute Att2.     

The identical-functions filter supports a conservative strategy often used in routine problem-

solving, and by learners in an unfamiliar domain, when they may reject all but the most certain 

mappings.  In solving physics or thermodynamics problems, for instance, the circumstances under which 

one can substitute one type of parameter for another are strictly limited.  For example, the analogical 

problem solver in (Ouyang & Forbus, 2006) used the identical-functions constraint when using SME to 

retrieve and apply plans from previously solved problems to handling new thermodynamics problems. 

The require-within-partition-correspondences filter supports another conservative strategy 

that is valuable for within-domain comparisons involving complex examples.  For instance, people and 

mountains can both be used in representations as ways of denoting locations, but people can be given 

tasks whereas mountains cannot.  (This example comes from using SME to reason about military tactics 

problems (Forbus et al. 2003).)  This class of constraint was also used in solving geometric analogy 

problems (Lovett et al 2009), to enforce human preferences for matching identical shape categories in 

this task.  

5 Theoretical and Empirical Complexity Analysis of SME 
Recall that the initial phase of SME’s processing is assumed psychologically to occur in parallel, 

constructing a forest of local hypotheses about matches and constraints between them.  This includes a 

local structural evaluation process that uses a propagation algorithm to compute scores for match 

hypotheses consistent with the systematicity principle.  The maximally consistent single-root subsets of 

this forest are the kernels of the match, which are then combined via a greedy-merge process to create 

mappings.  Assuming that the number of items in base and target is both n, then the worst-case size of 

the match hypothesis forest is bounded by n2.  This is also a worst-case bound on the number of kernels.  
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As Appendix A summarizes, the theoretical worst-case complexity for SME on a serial machine is 

O(n2log(n)).   

Worst-case analyses are notorious for their pessimism, and this analysis is no exception.  The best way 

to demonstrate this is empirically, using examples drawn from the modeling projects in Section 3.  As 

noted earlier, we instrumented the simulations and dumped copies of the base, target, and enough of 

the vocabulary to enable that SME match to be duplicated later, apart from the rest of the simulation 

code, to provide more accurate timings.  All runs were conducted on a cluster node running Linux, to 

minimize the number of other processes interfering.  This gave us a total of 5,839 comparisons. 

The size of the match hypothesis forest plays a central role in determining the overall effort needed in a 

comparison.  If there is substantial overlap, the forest will be large.  This may or may not lead to large 

matches, depending on the degree of structural consistency in the overlap, but certainly a large mapping 

cannot arise from a small forest.  It is instructive to compare the actual size of match hypothesis forests 

to the theoretical worst-case.  Since our worst-case analyses in Appendix A are all based on number of 

items (i.e. expressions plus entities), we can compare the square of this number, which is the worst-case 

complexity of this operation, to the actual number of match hypotheses and kernels in these mappings.  

Table 7 shows the results. 

In general, the number of match hypotheses is typically well below the worst case, and the number of 

kernels (which governs the time for the serial processing phase) is even further below the worst case.  In 

other words, on realistic descriptions, SME runs far faster than one would expect from the worst-case 

analysis.  The extreme closeness of the statistics for the two visual reasoning tasks is almost certainly 

due to the use of CogSketch for automatic encoding in both tasks.   

Can the size of descriptions be used to make any empirical prediction of run-time?  The answer is no, 

because the size of the match hypothesis forest depends on the overlap between the base and target.  
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There is more potential overlap for large descriptions than small ones, but two medium sized 

descriptions with many of the same predicates can have more overlap than two larger descriptions 

whose predicates have little overlap.  Thus there is no simple formula in terms of size alone for 

estimating run-time accurately.  That said, the theoretical complexity analysis captures the growth in 

resource usage.  Empirically, the correlation between n2log(n) and run time on a serial machine is quite 

high for all of the domains (R > 0.9) except for moral decision-making, where it is uncorrelated (R = -

0.02).  We note that moral decision-making is the only experiment in Section 3 involving cross-domain 

matches involving simple stories, which we believe explains the difference in its growth curve.  This 

suggests that the complexity analysis of Appendix A is a reasonable approximation in terms of growth of 

resources, but as Table 7 indicates, the actual numbers never get even close to the worst case, meaning 

that empirically performance is better than this analysis would suggest. 

6 Related Work 
Here we describe how our research fits into the broader picture of research on analogy and case-based 

reasoning. The success of the field has led to an increase in the number and variety of models of 

analogy, so this review is necessarily selective. (For more comprehensive reviews, see Gentner & Forbus, 

2011; Kokinov & French, 2003).  Chronologically, perhaps the earliest computational model of analogy 

was Evan’s (1968) system for geometric analogy tests. Winston’s (1980) pioneering work considered a 

broader range of analogies, including both perceptual and conceptual analogies. His work on “near 

miss” analogies dovetails with our work on alignable differences. While motivated by psychological 

concerns, these systems were rarely tested against empirical human data.   

The original version of SME (Falkenhainer et al. 1986; 1989) was the first simulation of analogical 

matching shown to be consistent with human similarity ratings (Skorstad et al., 1987) while also being 

able to produce psychologically plausible candidate inferences.  The current version of SME retains 
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those abilities, while adding the ability to generate alignable differences and abstractions and to handle 

incremental inputs, match filters, and scaling behavior that makes it more plausible as a human model.   

Holyoak and Thagard’s (1989) ACME followed closely after SME, and was partly based on SME.  ACME 

was the first connectionist simulation of analogy.  It utilized a multiconstraint approach to analogical 

mapping; the constraints were structural consistency; similarity between corresponding objects 

(“semantic similarity”); and pragmatic goal-consistency.  ACME used a localist connectionist network to 

implement SME’s match hypothesis forest, and a winner-take-all algorithm to compute the final 

mapping, taking all three constraints into account. However, ACME had some serious drawbacks (See 

Hummel & Holyoak, 1997). First, it allowed many-to-one matches, which led to structurally inconsistent 

mappings. Later studies confirmed structure-mapping’s claim that many-to-one matches are 

psychologically implausible (Krawczyk et al., 2005; Markman, 1997).  Second, people are capable of 

considering more than one mapping, and ACME’s winner-take-all algorithm ruled this out. Third, ACME 

was not capable of generating novel candidate inferences.  It could fill in a piece of structure given an 

explicit suggestion, but could not carry over inferences spontaneously as people routinely do 

(Falkenhainer, 1990; Markman, 1997). Thus it was unable to capture some of the key benchmark 

features of analogy summarized in Table 1. 

Keane and Brayshaw’s (1988) IAM operates in an incremental fashion. Like SME, it has explicit structural 

representations and maintains structural consistency. However, unlike SME, it can process ‘unnatural 

analogies’ that do not involve semantic commonalities—e.g., “Fido eats Kibbles” and “John loves New 

York”. Because IAM hypothesizes matches sequentially, it is highly sensitive to the order in which 

information is presented. This strong dependence on order of matches is problematic in light of 

evidence that some of the object matches made early in processing are later overruled by structural 

consistency (Goldstone, 1994).   
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Larkey and Love’s (2003) CAB model provides a parsimonious localist connectionist model of matching. 

CAB uses a simple iterative computation that matches elements in one representation with elements in 

the other. As in Goldstone’s (1994) SIAM, initial matches are governed by local object matches, with 

structural constraints becoming more important over processing. Larkey and Love (2003 showed that 

CAB can capture some of the benchmark phenomena for analogical processing (see Table 1).  However, 

it is unable to produce candidate inferences, one of the key benchmark phenomena.  

Several early models focused on particular domains, on the assumption that analogical matching is 

tightly integrated with domain-specific processing.  For example, COPYCAT (Hofstadter & Mitchell, 1995; 

Mitchell, 1993) constructed representations of strings of letters and solved analogies involving them.  

Similarly, TABLETOP (French, 1995) used processes of encoding and matching to capture how place 

settings at a table placed in analogy with each other.  These models have some interesting features, 

particularly the attempt to model interleaved processes of encoding and matching.  However, their 

mapping algorithms rely on domain-specific processes.  The psychological evidence to date suggests that 

analogical mapping processes are domain-general.  The current preponderance of domain-independent 

computational models of analogy matching suggest that models that focus on capturing a broader range 

of behavior in particular domains might do well to use a general-purpose matcher.  

The closest problem-solving model to ours is CASCADE (VanLehn & Jones, 1993), which used analogy in 

problem-solving.  When solving for a particular quantity in a new problem, CASCADE would look for a 

step in a prior solution that involved that quantity.   We used the same type of strategy in the simple 

thermodynamics problem solver described earlier, but with a general-purpose model of analogical 

matching (SME) instead of the special-purpose matcher used in CASCADE.  Another contrast is that in 

our AP Physics experiment, retrieval of prior problems was done using MAC/FAC, allowing us to capture 

the specific dynamics of analogical retrieval.  Another interesting model was PRODIGY-ANALOGY (Veloso 
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& Carbonell, 1993). This was the first use of analogy in a cognitive architecture.  PRODIGY treated 

analogy as a means of replaying problem-solving traces (i.e. derivational analogy), and its matcher and 

retrieval mechanism were specialized for that purpose.  By contrast, SME has been shown to be useful 

for derivational analogy, but also for decision-making and visual problem solving, as the experiments 

summarized in Section 3 illustrate. 

Grootswagers (2013) took a different approach to analogical modeling by conducting explorations of 

optimality.  He constructed a generator that would produce pairs of structures that varied in degree and 

kinds of match, and used this to look at when a greedy algorithm would produce optimal results.  He 

implemented his own version of the 1990 version of SME as well as an exhaustive version.  His greedy 

code found the same solution as his exhaustive algorithm 87.5% of the time (page 27, ibid) and found 

the same solution 99.89% of the time when run on pairs of plays from the original ACME datasets (page 

34, ibid.).   We find these results encouraging, since they support our claim that greedy merge performs 

well most of the time.  However, there is an important caveat: Our criteria was generating results 

identical to the exhaustive algorithm, whereas his optimality criteria was maximizing score. These are 

subtly different: Our greedy algorithm always produces structurally coherent candidate inferences, 

whereas Grootswagers’ algorithm does not, since it uses as kernels non-maximal collections of match 

hypotheses.  If two maximal kernels cannot be merged, it is because they are structurally inconsistent.  

So while including subcomponents of them might increase the match score, the resulting structure used 

to generate candidate inferences will be structurally inconsistent, which is psychologically implausible 

(Krawczyk et al. 2005; Markman 1997).   

Grootswagers also suggested that two variants of the original exhaustive SME would be better models 

than our greedy algorithm.  The specific models are (1) van Rooij et al. (2008) which searches every 

combination of sets of object matches, and (2) Wareham et al. (2011) which searches every combination 
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of statements.  We disagree with this conclusion, since both of those algorithms have factorial 

complexity (the first in number of entities in the base and target, the second in the number of 

statements in the base and target).  Those disagreements aside, we view Grootswagers’ work as a 

valuable theoretical exploration of the computational properties of matching. 

Like SME, the models discussed so far are focused on Marr’s top two levels—the computational level 

(what does the system do) and the process level (what are the representations and algorithms).  Some 

simulations of analogy also focus on Marr’s implementation level—how one might carry out such 

computations in neural systems.  Two prominent models of this type are LISA (Hummel and Holyoak, 

1997) and DORA (Doumas et al. 2008).  Both integrate retrieval with matching, and use a localist model 

of neural systems based on temporal binding.  In both simulations, temporal binding imposes strong 

constraints on the number of relations that can be considered.  LISA’s initial representation scheme led 

to estimates of working memory involving at most two or three relations (Hummel & Holyoak, 1997, 

2003).   This is much lower than that suggested by the task constraints described in Section 3.  Even if 

our estimates turn out to be too high, we note that ordinary everyday analogies often require more than 

three relations. A further problem is that, as pointed out by Eliasmith and Thagard (2001), the original 

version of LISA was incapable of handling matches involving higher-order relational structures, one of 

the benchmark properties of analogy.  Even simple causal analogies require dealing with higher-order 

relations. To overcome this problem, LISA has been extended with a new mechanism, group units. 

Group units provide a representation of relational structure that is not subject to LISA’s normal working 

memory limitations (Hummel et al. 2014). We view this evolution of LISA as recognizing that its prior 

working memory limitations were too restrictive to capture human abilities.  Finally, LISA relies on serial 

ordering of activation of its units, and this activation order can potentially be manually specified by the 

experimenters for each example.  Thus, LISA allows for a high degree of experimenter intervention in 

the internal operation of the system, making it highly tailorable. 
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DORA (Doumas et al., 2008) is closely related to LISA, but is aimed at modeling the discovery of 

relational representations during cognitive development.  It represents binary relations via two unary 

predicates plus a linking connective.  For example, higher is composed of the two unary predicates 

high and low, plus a unit that is active when both of them are active and which provides the 

connection between the two of them.  DORA’s process of connecting unary predicates into relations 

captures an important process in analogical development: namely, the relational shift, whereby children 

show the ability to match on object properties before the ability to match on relational structure 

(Gentner, 1988; Gentner & Rattermann, 1991; Gentner & Toupin, 1986; Richland et al., 2006).   

DORA represents an important attempt to capture how relational representation begins, and it has been 

used to model a number of other developmental phenomena (Morrison et al., 2011). Still, there are 

some assumptions that can be questioned. First, DORA’s constraint on the size of the representations 

seems unrealistic, even for children.  In DORA, the capacity of WM is two or two-and-a-half role 

bindings, compared to LISA’s original 4-5 role-filler bindings.   Doumas and colleagues argue that this 

very low capacity fits with the finding that preschool children often fail to match on the basis of 

relational similarity.  While this is an appealing feature of DORA, it is hard to see how to reconcile the 

assumption of a small fixed capacity with the many studies showing that children of the same age can 

show relational matching if they are led to have relational representations (Christie & Gentner, 2010; 

Gentner et al., 2011; Gentner & Rattermann, 1991; Kotovsky & Gentner, 1996; Loewenstein & Gentner, 

2005; Son, Doumas & Goldstone, 2010).  

DRAMA (Eliasmith & Thagard, 2001) constructs a localist network on top of fully distributed 

representations for base and target.  DRAMA, unlike LISA, operates autonomously and can handle larger 

descriptions than LISA can—at least up to a dozen or so propositions.  However, DRAMA currently has 

no mechanism for constructing candidate inferences—a critical benchmark feature for any model of 
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analogy.  Further, the distributed representations it uses require a localist network instead to implement 

match hypotheses and structural consistency relationships.  

Finally, we note that to date none of the neurally-inspired models has been used as a component in 

realistic-scale task models, as SME has, and all rely on hand-coded representations.  Given their focus on 

attempting to work within constraints of biology as they are currently understood, this seems very 

reasonable.  However, exactly how neural systems carry out their computations is still a matter of much 

debate.  The information and process level constraints, on the other hand, are clearer, and provide 

evidence about what is sufficient and even to some degree what is necessary to carry out a range of 

human tasks.  We hope that exploring how these two sets of constraints can be reconciled will be 

mutually productive. 

7 Discussion 
We have argued that structure-mapping is a core cognitive mechanism, used in a vast range of 

processes, from categorization to learning and transfer to problem-solving, and in everyday reasoning as 

well as scientific discovery.  This means, first, that a simulation of analogical matching must be able to 

handle the size and scale of representations that are likely to be used in human processing.  Second, the 

analogical matcher should be able to operate in concert with other processes to capture the use of 

structure-mapping in a range of cognitive arenas (the Integration Constraint (Forbus, 2001)).  This paper 

describes the changes we have made to SME to meet this challenge.  We described five extensions to 

SME itself that enable it to deal with analogies found in human tasks and to integrate with other 

processes: 

1. Greedy merge enables SME to rapidly construct one or two near-optimal global interpretations, 

making it a polynomial-time algorithm.  This allows SME to operate successfully on 
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representations that most other existing models cannot handle, and that are closer to the full 

range of representations likely to be used in human cognition. 

2. Incremental matching enables SME to operate in models where information is not all available 

at once.  This enables SME to better model tasks such as problem-solving, where analogies are 

incrementally elaborated. 

3. Ubiquitous predicates enable SME to model the varying degrees to which items may suggest 

alignment.  By marking some predicates as ubiquitous, and thereby not sufficient evidence by 

themselves to suggest a match, SME can handle complex representations, such as those found 

in problem solving. 

4. Structural evaluation of candidate inferences provide quick plausibility estimates, enabling SME 

to model aspects of plausibility judgments in analogical inference, including aspects of category 

induction. 

5. Match filters, automatically imposed by task models, enable SME to model the ability to 

respond to task demands in matching. 

The examples described in Section 3 demonstrate that SME can be used as a module in building realistic-

scale models that capture broader aspects of human behavior.  We view task constraints as extremely 

important in evaluating cognitive models, since they bear directly on their ability to explain how people 

use comparison. 

We see two main directions for future research.  First, the large-scale simulations outlined in Section 3 

are only a start: Exploring the roles of analogy and similarity in a broader range of cognitive processes 

via realistic-scale simulation is an enterprise that is just beginning.  By making available a robust model 
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of analogical matching, we hope we can encourage others to join us in these investigations17.  Second, 

the task demands on analogical matching pose a tough challenge for neural modeling, but such models 

must be constructed if we are to understand the phenomenon at all three of Marr’s levels 

(computational, process, and implementation). 
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10 Appendix A: The SME algorithm, version 4 
This appendix describes the algorithms in Version 4 of the Structure Mapping Engine, including the 

details behind the theoretical complexity analysis whose results were summarized in Section 5.  We 

begin with its inputs, outputs, and operations, then provide a step-by-step description of the algorithm, 

including the computational complexity of each step.  Finally, we combine the complexity results for 

each step to yield the overall complexity.   

We will continue to use Lisp syntax for representations, and infix mathematical syntax for procedures 

and algorithms, to make them easy to distinguish. 

10.1 Inputs, outputs, and operations 
The fundamental operation of SME is Comparison.  The Comparison operation takes the following 

inputs: 

 Base: A description, consisting of a set of statements in a structured representation language.   

 Target: A description, also consisting of a set of statements in a structured representation 

language.   

 Output constraints: These consist of two parameters: 

o The Score Cutoff indicates the range of mappings that SME should consider.  A score 

cutoff of 0.8, for example, means that mappings whose structural evaluation fell below 

20% of the best mapping would be pruned. 

o The output limit indicates the maximum number of mappings that SME should create.  

An output limit of three, for example, means that SME will never produce more than 

three mappings. This is its default setting. 

 Filters:  An optional set of additional constraints that mappings must satisfy.  The set of filters 

allowed is described in Section 4.5. 
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As discussed above, the output constraints and filters provide ways for task models to automatically 

tune the matcher.  The output constraints implement capacity limits, while filters provide ways of 

guiding the matcher using task-specific criteria.  As described earlier, the language for describing filters 

is tightly constrained, since allowing them to be arbitrary computations violates the spirit of structure-

mapping. 

The Comparison operation produces as output a set of mappings.  A mapping contains 

 Correspondences: The alignment between base and target represented by this mapping, 

expressed as a set of pairings of items (statements, entities, and predicates) in the base with 

items in the target. 

 Structural evaluation: A numerical estimate of the overall quality of the match. 

 Candidate inferences: A set of analogical inferences suggested by this alignment, including 

structural evaluations of the degree to which the mapping supports them and how extrapolative 

they are (Section 4.4). Candidate inferences are computed by default from base to target, but 

reverse candidate inferences, from target to base, can also be computed on demand.  Reverse 

candidate inferences are used when reasoning about differences, for example. 

Mappings and candidate inferences are now first-class entities, i.e., they can be referred to by systems 

using SME.  For example, a problem solver might have the explicit goal of extending a mapping or 

verifying a candidate inference.  We believe that this is psychologically plausible, given the human ability 

to reason about analogies. An analogy ontology (Forbus et al. 2002) has been defined to enable 

analogical operations to smoothly interoperate with other kinds of reasoning when needed.  However, 

SME itself only relies on very basic assumptions about the representation system it is being used with.  

The representation system must identify relations, attributes, and functions, and provide information 
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about their arity.  If minimal ascension is to be used, the representation system must also supply 

superordinate relationships, which can be used by an optional procedure to evaluate it. 

In addition to the Comparison operation, SME now supports two additional operations: Extend and 

Remap.  The Extend operation is used to extend the results of a comparison when new information is 

added to the base or to the target.  (We do not permit information to be removed from either base or 

target – if information is removed, a match must be started again from scratch.   This greatly simplifies 

the algorithms.)   Correspondences involving the new information are created and the existing mappings 

extended with this information as appropriate.   Incremental mapping can require backtracking, since 

misleading early information can lead to mappings that are suboptimal when additional information 

becomes available.  The Remap operation reconstructs the mappings, providing the same results that 

would have been found if the current state of the base and target had been available originally.  As 

described below, both Extend and Remap algorithms are carefully organized so as to preserve previously 

computed results that are still valid, for maximal efficiency.  We believe this is psychologically plausible – 

essentially, the initial stages remain unguided and parallel, while task-specific influences can operate at 

the later, serial phase of processing. 

10.2  The SME Algorithm, Step by Step 
Extend and Remap are almost entirely defined in terms of the same operations as Comparison, hence it 

simplest for exposition to describe Comparison and note along the way how Extend and Remap work.  

For the purposes of analyzing complexity, it is useful to decompose the phases from Section 2 further 

into the following steps: 

Phase One: Constructing the Match Hypothesis Network 

1. Finding match hypotheses.  Local correspondences (match hypotheses) between items in 

the base and target are proposed in parallel. 
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Phase Two: Parallel Evaluation of the Match Hypothesis Network 

2. Structural consistency filtering.  Match hypotheses that violate structural consistency are 

removed from further consideration. 

3. Structural evaluation propagation.  Structural estimates of match quality are constructed for 

each correspondence based on a trickle-down algorithm that provides a local 

implementation of systematicity. 

Phase Three: Constructing Mappings 

4. Kernel creation.  A kernel is a potential seed of a mapping.   Identifying them and scoring 

them is the first step towards creating a global construal of a match. 

5. (Optional) Filtering.  Irrelevant kernels are filtered using automatically imposed constraints 

from task models, using strictly local criteria.  

6. Greedy merge.  A small number of global mappings are constructed from the kernels. 

7. Candidate inference creation and evaluation.  Analogical inferences are generated for each 

mapping and evaluated in structural terms. 

We next describe how each step works in detail. 

10.2.1 Finding Match Hypotheses 
Match hypotheses are potential correspondences.  A match hypothesis links an item in the base to an 

item in the target.  Conceptually, this stage creates, in parallel, match hypotheses between all pairs of 

items in the base and target that could correspond.   (By “item” we mean expressions, entities and 

functors.) The result is a network out of which mappings are constructed. 

The structure of the match hypothesis network is motivated by the constraints of structure-mapping.   

The parallel connectivity constraint ties the structural consistency of a match hypothesis to the 

existence of match hypotheses for the corresponding arguments of the statements that it aligns.  For 
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any statement S, we use arguments(S) to refer to its arguments.  Similarly, given an item A, we use 

parents(A) to refer to the set of statements in which it appears as an argument.  For example, in 

S1: (contains (bloodstream animal12) seretonin) 
arguments(S1) = {(bloodstream animal12), seretonin} 
S1  parents(seretonin) 
Parent and argument relationships are similarly defined for match hypotheses, based on the statements 

they align.  That is, MH1 is in arguments(MH2) if the base and target items aligned by MH1 are 

corresponding arguments in the statements aligned by MH2, and conversely, MH2 is in parents(MH1).  

For example, 

S2: (contains (bloodstream animal6) seretonin) 
MH1: (bloodstream animal6)  (bloodstream animal12) 
MH2: S2  S1 
MH1  arguments(MH2) 
MH2  parents(MH1) 
It is also useful to refer to the predicate, function, or connective involved in a statement.  We use the 

function functor for this purpose.  Thus 

contains = functor(s2) 
bloodstream = functor((bloodstream animal6)) 
 

A match hypothesis that has no parents is called a root match hypothesis.  Similarly, statements in 

descriptions that are not themselves arguments of another statement are called root statements.  We 

simply use the word “root” when context makes it clear which type we are talking about. 

Here is the match hypothesis construction algorithm: 

Match Hypothesis Network construction 

Inputs: Base B, Target T, (optional) procedure locally-alignable? 

Outputs: Network of match hypotheses MHS 

1. Initial network construction:  For each Bi  Expressions(Base) and Ti  
Expressions(Target) such that Functor(Bi) = Functor(Ti) & 
not(Ubiquitous(Functor(Bi))),  

1.1. Create MH(Bi, Ti) 
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1.2. Push(MH(Bi,Ti), MHS) 
1.3. For each corresponding pair of arguments Bj, Tk in MH(Bi,Ti), push(<Bj, Tk>, Queue) 

2. Network growth:  Until Queue is empty, process each <Bj, Tk> as follows: 
2.1. If functor(Bj) = functor(Tk) & not(Ubiquitous(Functor(Bi)))ignore. 

 ;; Step 1 already handled this pair, but if ubiquitous, it didn’t – part of larger structure, so 
;; worth binding 

2.2. If Bj, Tk are both entities, create MH(Bj,Tk), push(MH(Bj,Tk),MHS) 
2.3. If either Bj or Tk is an entity, ignore. 
2.4. If functor(Bj) and functor(Tk) are functions and identical-functions constraint is false,  

2.4.1. Create MH(Bj,Tk), push(MH(Bj,Tk),MHS) 
2.4.2. Push(MH(Bj,Tk), Queue) 

2.5. If locally-alignable? is supplied and locally-alignable?(Bj,Tk,MH(Bi,Ti)), 
2.5.1. Create MH(Bj,Tk), push(MH(Bj,Tk),MHS) 
2.5.2. Push(MH(Bj,Tk), Queue) 

 

An initial set of match hypotheses is constructed based on purely local, structural grounds (Step 1), and 

then extended based on placing arguments of potentially corresponding statements into alignment 

(Step 2).   The contents of the initial set of match hypotheses and the growth of the network are 

governed by the tiered identicality constraint18.   Recall that tiered identicality by default requires 

relations to match identically.  The initial set of match hypotheses is created by finding all pairs of 

statements Bi  Base and Ti  Target such that  

functor(Bi) = functor(Ti) 

and, if the functor is not a ubiquitous predicate, creating a match hypothesis for it.   

This set is grown by propagating outward from the initial set, looking for matches between 

corresponding arguments of the statements aligned in the initial match hypothesis set.  Weaker criteria 

are used for matching when alignment is suggested by other match hypotheses.  Statements whose 

functors are ubiquitous predicates are matched, since the shared parent provides a reason to do so: not 

                                                             
18 See Ferguson (2003) for the special case of creating match hypotheses over pairs of commutative expressions, 
such as matched group or set expressions. In this case, SME delays creating one-to-one matches until resolved by 
other non-commutative expression matches, during the merge process.  It represents the set of potential matches 
between commutative expressions in a compact matrix called a commutatives table. 
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including it would violate parallel connectivity.  By default, matches between non-identical functions are 

allowed when they would support a larger match, since these semantically correspond to cross-

dimensional differences.  Such cross-dimensional matches are not allowed if the identical-functions filter 

is in force.  The optional procedure locally-alignable?, if supplied, implements the non-default 

cases of tiered identicality.  For example, if minimal ascension is used, this procedure must use an 

appropriate knowledge representation system to ascertain if there is a close-enough common 

superordinate.  All of the examples in this paper and the experiments in Section 3 use strict identicality 

or minimal ascension.  

10.2.1.1 Complexity of Finding Match Hypotheses 
The default test using tiered identicality is identity of functors, which can be considered a unit-time 

operation.  Other techniques like similarity tables (Holyoak and Thagard, 1989) and minimal ascension 

(Falkenhainer, 1987) satisfy the unit-time operation assumption. We ignore potentially more complex 

tests here, since they lie outside the spirit of structure-mapping. 

Finding the initial set of match hypotheses requires comparing every statement in the base with every 

statement in the target to see if their functors are identical, and if so, creating a match hypothesis.  On a 

serial machine, this step is bounded above by O(n2).  Since each comparison is independent, they can be 

done in parallel in unit time if there are at least n2 processors available.   We have found it useful to pre-

sort expressions in the base and target into bins by functor, so that we can simply create match 

hypotheses between expressions in corresponding bins.  In the worst case, where every expression had 

the same functor, this would still be O(n2), but in the best case, where every statement within the base 

and target had a different functor, this would reduce to the complexity of the sort, i.e. O(nlog(n)).   

The filling out of the match hypothesis forest by generating match hypotheses between corresponding 

arguments (when possible), is a function of the number of match hypotheses found in the initial step 
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and the depth of each tree of arguments.  We ignore the depth-related costs for two reasons.  First, 

argument trees are typically much smaller compared to the total number of statements in the 

description.  Second, all match hypotheses between statements with identical functors have already 

been found in the initial step, so only entities plus statements involving non-identical functions or 

ubiquitous predicates will cause new match hypotheses to be created.  This means the complexity of the 

filling in the match hypothesis forest is bounded by O(n2). 

10.2.2 Structural Consistency Filtering 
The collection of match hypotheses as generated provides the threads out of which mappings are 

woven.  However, at this stage in processing it is still inchoate.   Local application of structure-mapping 

constraints prunes all match hypotheses that could never be part of a consistent mapping.  Such 

hypotheses are marked as structurally inconsistent by this stage of processing and subsequently 

ignored. 

Recall that parallel connectivity states that the arguments of a pair of aligned statements must also be 

aligned.  Match hypotheses that violate parallel connectivity are said to be incomplete.   The first part of 

detecting incomplete match hypotheses occurs during the construction of the match hypothesis forest, 

since failure during the attempt to align the arguments of two matching statements indicates that that 

match hypothesis is incomplete.  However, parallel connectivity also implies that all parents of that 

match hypothesis are also incomplete.  This implication is enforced by propagating incompleteness 

markers upwards to all parents from incomplete match hypotheses once the forest has been finished.   

The 1:1 constraint is enforced by propagating information through the argument relations about 

structural dependencies of match hypotheses.   The descendants of a match hypothesis is the set of 

match hypotheses that it structurally depends upon.  For example, 

MH1: (above triangle32 circle6)  (above triangle18 circle3) 
MH2: triangle32  triangle18 
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MH3: circle6  circle3 
MH4: above  above 
descendants(MH1) = {MH2, MH3, MH4} 

descendants is the transitive closure of the arguments relation.  We use descendants to define 

the set of nogoods for a match hypothesis, i.e., those match hypotheses which, combined with it, 

would lead to a structurally inconsistent result19. 

We define nogoods recursively as follows: 

nogoods(MH) = { MHi | MH  MHi  
                 ([BaseItem(MH) = BaseItem(MHi) 
                     TargetItem(MH) = TargetItem(MHi)] 
                    [ MHj (MHj  descendants(MH)) 
                        MHi nogoods(MHj)])} 

That is, two match hypotheses are together structurally inconsistent if either they directly map the same 

base item to different target items (or the same target item to different base items) or if corresponding 

descendants do.   

Since descendants and nogoods are heavily used in creating mappings, we compute these sets explicitly 

and cache them with each match hypothesis.  Structurally inconsistent match hypotheses are detected 

during this process, i.e., when the intersection of a match hypotheses’ descendants and nogoods is non-

empty.   

To support incremental operation, the descendants and nogoods sets are recalculated whenever new 

match hypotheses are added to the forest.  (The same calculation is used when a match is started, with 

every match hypothesis being new.)  Perhaps surprisingly, the structural consistency computations are 

monotonic with respect to the addition of new items to the base and target.   That is, the sets of 

descendants and nogoods can only grow, not shrink.  This is easier to see if one remembers that 

                                                             
19 The term nogoods is an analogy with truth maintenance systems, in which nogoods are either sets of 
inconsistent assumptions or clauses that generate such sets (Forbus & de Kleer, 1993). 
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statements can be added but not modified.  This means for any statement its arguments remain 

constant.  (Tweaking a representation to improve the match is carried out by adding redundant items to 

base or target, but these only give rise to new match hypotheses, rather than replacing or mutating 

existing ones.)  Updates occur by propagating upwards from the lowest-order newly added match 

hypotheses.   The descendants are simply the union of the descendants of the arguments, plus the 

match hypothesis between the corresponding functors (when the match hypothesis is an expression).  

The nogoods are simply the union of the nogoods of the arguments with the set of match hypotheses 

that directly conflict with it (i.e., that satisfy the first disjunct in the definition above).   

10.2.2.1 Complexity of Structural Consistency Filtering 
Suppose there are m match hypotheses.   Organizing the propagation step as an iteration that proceeds 

from entity matches up through the parents relations can be done in such a way that each match 

hypothesis is processed exactly once, using standard tree traversal algorithms, hence this step is O(m).  

Again we treat set operations as constant-time, since they can be implemented using bit vectors (or run-

length encoded bit vectors) to minimize cost.   

10.2.3 Structural Evaluation Propagation 
Structural evaluation implements the systematicity preference.  Ultimately, structural evaluation scores 

will be assigned to each mapping by adding up the scores of the match hypotheses that comprise the 

mapping.   Structural evaluation needs to be done early, since its results are used in guiding the greedy 

merge process described below.  Thus as soon as structural inconsistencies have been removed, a 

numerical propagation step is used to compute scores for each match hypothesis. 

The score of a match hypothesis is computed in two parts.  First, there is a local component, a starting 

score given to every match hypothesis.  There are two parameters here: same-functor is the score 

given if the match hypothesis involves statements with identical functors or involves entities, and 

different-functor otherwise.  The default values for same-functor and different-functor are 5x10-4 
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and 2x10-4 respectively.  Note that their exact values do not matter, only their values in relation to each 

other.  The second part of the score is computed by the trickle-down rule: Given MHa with parents MHS, 

Score(MHa)  Score(MHa)+ trickle-down * Sum(Scores(MHS)] 

where trickle-down is a constant indicating the strength of the systematicity constraint. The default 

value for trickle-down is 8. Notice that this algorithm results in high scores for entity match 

hypotheses that support large structurally consistent matches.  Thus the global preference for 

systematicity is computed by a propagation algorithm operating on local evidence. 

In some cases, a match hypothesis can receive trickle-down from parents that are structurally 

inconsistent with each other.  For example, 

MH1: (above triangle32 circle6)  (above triangle18 circle3) 
MH2: (above triangle32 circle6)  (above triangle18 square19) 
MH3: triangle32  triangle18 

Both MH1 and MH2 are parents of MH3, but a final mapping could not contain both of them. To avoid 

inflating the value of a match hypothesis during trickle-down, the algorithm greedily selects a match 

hypothesis’ parents, beginning with the highest-scoring parent, and skipping over any parent that is 

structural inconsistent with parents already selected.  It only applies trickle-down from these selected 

parents (in this example, either MH1 or MH2). 

Earlier versions of SME normalized the score of each node to be a maximum of 1.0.  This proved to be 

problematic for large, deeply nested representations, since many of the lower-level nodes would max 

out to 1.0.  Consequently, we eliminated this limit, and now normalize at the level of the mapping, as 

discussed below. 

10.2.3.1 Complexity of Structural Evaluation Propagation 
Local scores are initialized when match hypotheses are created, so the only cost is that of applying the 

trickle-down rule.  On a serial machine, applying trickle-down can be done by iterating over the match 
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hypotheses, starting at the roots of the match hypothesis forest and working downwards.  First, suppose 

each match hypothesis has only a single parent, so greedily selecting among parents is not a factor. 

Since this only requires processing each match hypothesis once, the complexity is O(m).  On a data-

parallel machine, assuming at least m processors, the time required will be proportional to the 

maximum depth of expressions being processed.  In the worst case this would be O(m), in the 

(extremely unnatural) case when the base and target were single expressions with extremely deep 

nesting, i.e., 

 (P (P (P … (P e)…))) 

More typically, there is a small integer d that can be found as an upper bound on the depth of 

expressions, in which case the data-parallel time required will be constant independent of m. 

Now, consider the case where match hypotheses have multiple parents. Each match’s parents must be 

sorted by score, so that they can be greedily selected for trickle-down. If a match has p parents, this will 

require O(plog(p)) time, however, p in our experience is always small, so we ignore the cost of this 

operation.   

10.2.4 Kernel Creation 
Kernels form an important intermediate representation in the creation of a mapping.  They represent 

the place where we believe that the shift from parallel processing to serial processing in analogical 

matching occurs, and where we suspect that penetrability can begin to occur.   

A kernel consists of the union of a structurally consistent root match hypothesis with its descendants.  

The structural evaluation score of a kernel is the sum of the structural evaluation scores for the match 

hypotheses that comprise it.  The nogoods of a kernel is the union of the nogoods of the match 

hypotheses that comprise it. 

Kernels are found by the following algorithm:  
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1. For each root R in the match hypothesis forest,  
a. If R is structurally consistent, then create kernel K consisting of R  descendants(R). 
b. Otherwise, recurse on arguments(R) 

It is important to note that match hypotheses can be in multiple kernels.  Merging kernels with 

overlapping base structure can lead to candidate inferences, if the base statements corresponding to 

the match hypothesis roots are not themselves roots of the base description, as Fig. 6 illustrates. 

10.2.4.1 Complexity of Kernel Creation 
An extreme upper bound for the complexity of this step is O(m), where m is the number of match 

hypotheses.   This could in theory occur when the match hypothesis forest is extremely shallow, 

consisting of correspondences between distinct unary predicates with an entity as their argument, 

leading to m/2 kernels.  The best case would be when the base and target were completely isomorphic 

structures with a single root, with each subexpression having a unique functor.  In that case there would 

be exactly one kernel.  In practice the number is somewhere in between, with good matches having a 

small number of large kernels and poor matches having a lot of small ones.   

10.2.5 Match Filters 
The greedy merge algorithm used to combine kernels into mappings provides a good approximation to 

the best mapping, in terms of structural consistency.  We believe that this is both psychologically 

accurate and useful computationally.  However, in cases where task demands impose additional 

constraints on mappings, a carefully constrained set of filters, automatically constructed by the larger 

task model, can be provided as one of the inputs to the match process.   

Filters work by eliminating kernels from further consideration, weeding them out before they are used 

in the merge phase.  Here is how they operate: 

 (Excluded bi tj)  remove kernel if it contains a match hypothesis which maps bi to tj. 
 (Required bi tj)  remove kernel if it contains a match hypothesis which maps bi to some 

tk, tk  tj or if there is a match hypothesis that maps tj to some bl, bl  bi. 
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 (Identical-functions)  remove kernel if it contains a match hypothesis that maps a 
functor F which is a function to some function G, G  F. 

 (require-within-partition-correspondences Att1 Att2)  remove kernel if it 
contains a match hypothesis that maps an entity with attribute Att1 to an entity with attribute 
Att2. 

It is important to notice that filtering only determines whether or not kernels are considered in the 

merge phase, i.e., kernels inconsistent with the filters are not destroyed.  This provides the ability to 

rapidly explore alternate interpretations, since the only work that needs to be re-done when exploring 

alternate constraints is re-doing the merge process itself. 

10.2.5.1 Complexity of Match Filters 
All of the tests for filter constraints are strictly local and rely only on structural properties of the 

expressions themselves, with the exception of the partition constraints.  There, category membership is 

tested by the existence of attribute statements explicitly within the descriptions, which again is a local 

operation.  Thus applying any of these filters to a single kernel can be considered a constant-time 

operation, so the complexity of applying them to the set of kernels is simply O(k), where k is the number 

of kernels.   

10.2.6 Greedy Merge 
A mapping is a structurally consistent set of correspondences that is maximal, i.e., adding more match 

hypotheses would make it structurally inconsistent.  Importantly, a comparison can have multiple 

maximal mappings, due to some interpretations of that comparison being structurally inconsistent with 

each other.   

Mappings are created by merging kernels.  As Section 4.1 outlined, we now use a greedy merge 

algorithm instead of an exhaustive algorithm, trading guarantees of optimal outputs for efficiency.  We 

believe that this kind of approximation is psychologically plausible.   

Our algorithm proceeds in two phases: 
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1. For each base root that participates in a kernel, greedily merge the kernels that project to it.  This 
step improves the likelihood of candidate inferences by pre-combining kernels that could lead to 
them. 

2. Greedily merge the solutions found for each base root to form a handful of global mappings. 

We give the formal description of the entire algorithm below.  We start with the crucial core algorithm 

combining partial mappings, which we call GreedyMerge.  Greedy algorithms combine local solutions to 

form global solutions.  They require a notion of solution quality that can be used to impose a preference 

ordering on local solutions.  For constructing interpretations of a match, the local solutions are the 

kernels and the quality metric is their structural evaluation scores.  The core GreedyMerge algorithm is: 

Algorithm: GreedyMerge 
Input: A set of partial mappings PMAPS, a score cutoff S, and a maximum number of desired 
interpretations N 
Output: Up to N combined mappings, MAPPINGS 
 
1. Sort PMAPS into a list in descending order, based on their structural evaluation scores. 
2. INTERPS  {}; MAX  0 
3. Until PMAPS = {} 

3.1. INTERP  pop(PMAPS) 
3.2. For each K in PMAPS, 

3.2.1. If  Nogood(INTERP,K) then 
3.2.1.1. INTERP  INTERP  {K} 
3.2.1.2. PMAPSPMAPS – K 

3.3. For each INTERP-B in INTERPS, 
3.3.1. For each K in INTERP-B, 

3.3.1.1. If  Nogood(INTERP,K) then 
3.3.1.1.1. INTERP  INTERP  {K} 

3.4. If score(INTERP) > MAX then MAX score(INTERP) 
3.5. If score(INTERP) < S*MAX then go to 4. 
3.6. INTERPS INTERPS  {INTERP} 
3.7. If |INTERP| = N then go to 4. 

4. Mappings  map(CreateMapping,INTERPS) 
 

Note that step 3 allows an interpretation to also include kernels from previously-found interpretations. 

This step is solely used in the second phase, in which global mappings are discovered. 

Algorithm: CreateMapping 
Input: An interpretation INTERP, consisting of a set of partial mappings 
Output: A mapping M 
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1. Let M be a new mapping 
2. Correspondences(M) apply(,map(correspondences, INTERP)) 
3. Score(M)  apply(+,map(score,Correspondences(M)) 
4. CandidateInferences(M)  FindCandidateInferences(M) 
Finding candidate inferences is discussed in the next section. 

Intuitively, the GreedyMerge algorithm selects the largest partial mapping and merges into it 

everything that is structurally consistent.  Each partial mapping added to the interpretation can rule out 

others, since it imposes new structural consistency constraints.  (The nogoods for a set of partial 

mappings is simply the union of the nogoods for the partial mappings.)  By starting with the largest we 

improve our chances of getting the best solution.  By starting subsequent solutions with the largest 

remaining partial mapping, we improve our chances of getting a different yet still good solution, since to 

be still available it must be structurally inconsistent with earlier solutions.  We view the ability to 

generate multiple interpretations of an analogy as critical.  Even with a firm goal in mind, there can still 

be several ways to interpret an analogy (e.g. the Contras example in Holyoak and Thagard (1989)). 

With the GreedyMerge algorithm in hand, now we can define GreedyMap: 

Algorithm: GreedyMap 
Inputs: A list of kernels KERNELS, a set of match constraints CC, a score cutoff S, and a maximum 
number of desired interpretations N 
Outputs: Up to N global mappings, MAPPINGS 
1. Let BASE-PARTITIONS = CalculateBasePartitions(KERNELS). 
2. Let CANDIDATES = apply(, map(GreedyMerge, BASE-PARTITIONS)). 
3. GreedyWeave({},CANDIDATES, S, N). 
 

CalculateBasePartitions involves sorting the kernels into equivalences classes according to what 

base root(s) they project onto, and performing GreedyMerge within each equivalence class.   This step 

is useful because candidate inferences arise from common base structure, hence pre-merging kernels 

that project onto the same base increases the likelihood of good candidate inferences.   

GreedyWeave simply calls GreedyMerge on each element of REQUIRED in turn, with PMAPS = a 

required seed  CANDIDATES, if any, using this output recursively for each subsequent candidate.  The 
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process stops when either N solutions are generated or a new solution drops below the score cutoff of 

the previous solution.   

Recall that N, the maximum number and S, the score cutoff, are psychologically motivated.  The limited 

number of mappings that can be produced respects constraints on memory resources, and the score 

cutoff implements the intuition that an overwhelmingly better mapping swamps consideration of any 

alternatives.  The default value for N is 3, and the default value for S is 0.8.   

10.2.6.1 Complexity of Greedy Merge 
Let us begin with analyzing the GreedyMerge algorithm, since it is at the core of the process.  The first 

step, sorting the kernels, is O(klog(k)) in the number of kernels k. Each mapping is found in linear time 

O(k) because it requires considering first the unused kernels and then the kernels in previous mappings. 

At most, N mappings are considered (where N = 3 by default). Therefore, the overall complexity is 

O(klog(k)).  This is assuming that the cost of structural consistency tests can be ignored, which is 

reasonable given fast set intersection/union techniques involving bit-vectors.  

Recall that the number of kernels k is worst-case O(n2) in the size of the base and target.  In terms of 

base and target sizes, then, the complexity of GreedyMerge is thus worst case O(n2log(n2)), i.e., 

O(n2log(n)).  In practice the number of kernels is typically much smaller, since the worst-case presumes 

that every statement is independent.  Rich, structured representations with substantial overlap tend to 

provide fewer and larger kernels, leading to better performance in such situations.  This is unlike many 

match algorithms, where matching larger structures always leads to worse performance.   

CalculateBasePartitions involves doing a GreedyMerge step for each of the base roots.  The 

number of base roots as a function of the size of the base can range anywhere from 1 to n/2, the former 

when the entire base is a coherent focused argument, and the latter where the base consists of a 

disconnected set of entities, each with a single attribute known about it.  (It can never be larger than n/2 
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because entities without any attribute or relational information will not participate in any match 

hypotheses, and hence will be irrelevant for the algorithm.)  Therefore in the worst case, the complexity 

of CalculateBasePartitions is O(n2log(n)) in the case of isolated entities, with typical case 

complexity being much lower than that.  Again, with this algorithm, growth in base and target sizes does 

not always result in growth in processing time or memory – it can actually decrease if the growth makes 

the relational structures more connected! 

Given the tight bounds imposed by N and F, the complexity of GreedyWeave is simply that of 

GreedyMerge, O(n2log(n)), since the number of times it is executed depends on them instead of the 

sizes of the base and target.  The worst-case complexity for the GreedyMap step is simply the 

complexity of its most expensive step, CalculateBasePartitions, and hence is O(n2log(n)).   

10.2.7 Generating Candidate Inferences 
The algorithm for computing candidate inferences is: 

Algorithm: FindCandidateInferences 
Input: A mapping M 
Output: the set of candidate inferences CandidateInferences(M) 
1. CandidateInferences(M)  {} 
2. For each R  Roots(Base(M)), 

2.1. When  MH  Correspondences(M) | Root(BaseItem(MH)) = R, 
2.1.1.  CandidateInferences(M)  CandidateInferences(M) 

  ConstructCI(R, M, {}) 
3. For each CI  CandidateInferences(M), CIStrucuturalEvaluation(CI) 
 

That is, each root expression of the base that intersects the subset of the base that is mapped by M gives 

rise to a candidate inference.  Reverse candidate inferences are computed via the same algorithm, using 

the target as the starting point instead of the base. 

There is a subtle issue here concerning how much overlap between the base and the mapping is needed 

to suggest a candidate inference.  The most conservative criterion requires overlapping statements, the 
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most liberal criterion requires only overlapping entities. The conservative criterion limits candidate 

inferences to filling in causal, inferential, or other higher-order structure involving overlapping 

statements.  The liberal criterion enables candidate inferences to import whole new structures into the 

target, based on entity overlaps established by other parts of the base.  Given the need to evaluate 

candidate inferences in any case, the default mode of operation is the liberal criterion.  However, SME 

includes a switch for enforcing the conservative criterion, which is implemented by an extra condition in 

line 2.1 above. 

Recall that candidate inferences can introduce new entities into the target, called skolem entities.  The 

ConstructCI algorithm must do a tree walk through the base expression, introducing such skolems as 

necessary.  We say that a base item B is mapped in mapping M if there is some match hypothesis in the 

correspondences of M which has B as its base item.  If B is mapped, then its correspondent is the target 

item for the match hypothesis which mentions B.  Similarly, if a target item T is mapped in M, then its 

correspondent is the base item for the match hypothesis that involves T.  (That correspondent, when 

defined, is a function follows directly from the 1:1 constraint of structure-mapping.)  Thus we must 

introduce skolems for each entity in the base expression that does not have a correspondent.  

Moreover, we must introduce the same skolem for each occurrence of the entity in the base expression, 

since an entity can occur multiple times in the same expression.  This is what makes ConstructCI a bit 

complex, since it must maintain a table of bindings. 

Algorithm: ConstructCI 
Input: A base item B, a mapping M, and a set of bindings Skolems 
Outputs: An expression representing a candidate inference and a set of skolem entities for base items 
that have no correspondent in the target. 
1. If B is an entity, 

1.1. If Mapped(B,M) then return Correspondent(B,M) and Skolems 
1.2. If lookup(B,Skolems) then return value(lookup(B,Skolems)) and Skolems 
1.3. Let Sk(B) be a new skolem constant.  Return Sk(b) and Skolems  Bind(B,Sk(B)) 

2. If B is a functor, if Mapped(B,M) then return Correspondent(B,M) and Skolems, otherwise 
return B and Skolems 
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3. Otherwise B is an expression.   
3.1. If Mapped(B,M) then return Correspondent(B,M) and Skolems 
3.2. Otherwise, let cargs = empty list 

3.2.1. Let cfunctor, skolems = ConstructCI(functor(B),M, skolems) 
3.2.2. For each A  arguments(B), 

3.2.2.1. Let carg, newskolems = ConstructCI(A,M,skolems) 
3.2.2.2. Let cargs = cargs  {carg} 
3.2.2.3. Let skolems = newskolems 

3.2.3. Return MakeExpression(cfunctor, cargs) 
 

A subtle issue in ConstructCI is that it assumes that functors lying outside the mapping should be 

brought over intact.  This design choice reflects our intuition that one purpose of analogical matching is 

to help regularize, and thus extend, one’s knowledge.   The alternative would be to always create a 

skolem constant for the functor, and then attempt to replace it with the functor from the base as a 

separate step.  Since candidate inferences always need to be checked for validity in any case, 

inappropriate carryover of functors will be detected during this process anyway.  Our choice to carry 

them over intact biases the process towards accepting the carryover by default.   

The structural evaluation algorithm for computing support and extrapolation scores 

(CIStructuralEvaluation above) is a variation of the algorithm used for mappings.  To compute the 

support score of a candidate inference, the initial bias plus trickle-down algorithm is executed on just 

the subset of the correspondences that support it in the mapping and adding up the results.  

The extrapolation score of an analogical inference is, roughly, the size of the new information over the 

total size of the inference. Consider two limiting cases, neither of which can actually occur.  If there were 

no support (i.e., a hallucination), all the information would be new, so the extrapolation score would be 

1.  If there were nothing new (everything was there already), then the score would be 0.  Any real 

candidate inference will be somewhere in between these two values. 

The algorithm for computing extrapolation scores is 
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1.  Apply the trickle-down algorithm to the structure of the inference itself, i.e., as if we were 
matching the inference to itself 

2.  The extrapolation score is 

 
)()(

)(
InsidescoreOutsidescore

Outsidescore


 

where Inside refers to the items in the candidate inference that are part of the mapping and Outside 

refers to the items in the candidate inference that are being projected.  Using the trickle-down 

algorithm provides a more conservative score than simply counting items would, since the existence of 

large structures outside the mapping will lead to higher scores inside the mapping due to trickle-down. 

10.2.7.1 Complexity of Candidate Inference Generation 
Since the size of statements is typically small compared to the number of statements in the descriptions, 

we ignore all variability in cost of recursive traversal of statements, treating it as a constant, and focus 

instead on the number of candidate inferences there can be, since that can vary as a function of the size 

of the input descriptions.  Because of structural consistency, each base root can participate in at most 

one candidate inference per mapping.  Consequently the growth of candidate inferences is bounded by 

O(n). 

10.2.8 Extending and Remapping 
The intuition behind incremental mapping is that normally people first try to incorporate new 

information into an ongoing mapping (Extend), but that they can reinterpret the analogy if necessary 

(Remap).    

Extending a mapping occurs when new information is added to the base or target of a match.  Basically, 

the new information is matched against the other representation, leading to new match hypotheses and 

new kernels.  Notice that since the information is new by assumption, there cannot already be any 

correspondences pertaining to it in the match.  Therefore either some new kernels will be formed, or 

the new information does not match at all to the other description in its current state.  New kernels are 
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then added to existing mapping(s) if they are structurally consistent with them.  This can lead to the 

elimination of candidate inferences, if the new information is about the target and “fills in” the missing 

structure. 

The worst-case complexity of extending a mapping is the same as the Comparison algorithm, since in the 

worst case one is adding all of the information to an empty base and target.  The typical case complexity 

is of course much lower, since adding one new item to the base (or target) only requires checking it 

against all of the items in the target (or base), not re-checking any previous base (target) statements.   

The Remap algorithm simply destroys the existing mappings and re-performs the Greedy Merge 

algorithm based on the full set of kernels from scratch.  Thus the complexity of the Remap operation is 

simply that of the Greedy Merge algorithm.  Psychologically, we believe that the remapping criteria 

people use is task-specific.  Consequently, SME does not automatically remap: The decision to remap 

must be taken by some external model or system.  To help external systems make such decisions SME 

does provide an estimate of what fraction of the total possible structural evaluation the current 

mappings represent.  When this fraction gets low, it suggests that remapping might lead to a better 

global interpretation.   

10.2.8.1 Complexity of Extending a Match and Remapping 
Extending a match with new items in the base and/or target requires extending the match hypothesis 

forest and adding the kernels (if any) to the existing mappings.  The candidate inferences for the 

mappings need to be recomputed.  This is clearly bounded above by the complexity of computing the 

match from scratch, although in practice it is typically far less.  Remapping simply re-runs GreedyMap, 

which is O(n2log(n)), as per the analysis above. 
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10.3 Complexity of the SME algorithm 
If, as we believe, comparison comprises one of the core processes of cognition, then it is crucial for its 

computational complexity to be low.  SME’s computational complexity is in fact quite low.  Recall that if 

the number of items in the base and target is n, the number of kernels k is bounded by n2. The results of 

the complexity analysis can be summarized as follows: 

Operation Worst-case 
time, serial 
processing 

Finding match hypotheses O(n2) 
Structural consistency filtering O(n2) 
Structural evaluation propagation O(n2) 
Kernel creation O(n2) 
Filtering and pragmatic marking O(n2) 
Greedy merge O(n2log(n)) 
Candidate inference construction O(n) 
Extending/Remapping O(n2log(n)) 

 

Thus the SME algorithm is worst-case O(n2log(n)) on a serial processor.  Most of SME’s processing can be 

done in parallel, as our analyses of individual steps noted.  Assuming a data-parallel machine with at 

least n2 processing elements to handle match hypothesis networks, the processing for the overall 

algorithm would be between log and linear, depending on specific assumptions about the parallel 

architecture. 
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11 Figures 
 

Figure 1: The Three phases of the SME algorithm 
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Figure 2: Analogous oscillators 
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Figure 3: Graphical depiction of the base and target for the oscillators example 

Base: 

 

Target: 
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Figure 4: Match hypothesis forest for the oscillators 
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Figure 5: Kernels for the oscillators comparison 
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Figure 6: The mapping SME constructs between the oscillators 
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Figure 7: Examples of geometric analogies.  “A is to B as C is to…?” 

(a) (b) 
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Figure 8: Examples of a visual oddity task. “Pick the image that doesn’t belong.” 

(a) (b) 
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Figure 9: An example AP Physics problem 
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12 Tables 
 

Table 1: Benchmark Phenomena of Analogy 
Adapted from Gentner & Markman, 2005; Markman & Gentner, 2000) 

Relational similarity 
Analogies involve relational commonalities; object commonalities are 
optional. 

Structural consistency 
Analogical mapping involves one-to-one correspondence and parallel 
connectivity. 

Systematicity 
In analogical mapping, connected systems of relations governed by 
higher-order constraining relations are preferred over isolated 
relations. 

Candidate inferences Analogical inferences are generated via structural completion. 

Alignable differences 
Differences that are connected to the commonalities of a pair (and 
not unconnected differences) are rendered more salient by a 
comparison. 

Interactive interpretation 
Analogy interpretation depends on both terms; the same term yields 
different interpretations in different comparisons. 

Multiple interpretations Analogy allows multiple interpretations of a single comparison. 

Cross-mapping 
Though difficult, cross-mappings are generally interpreted relationally 
although the competing object similarities are perceived. 
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Table 2: Experiments with sources of representations. 

#Cases indicates the total number of cases generated, across all problems in that task.  #Comparisons 
indicates the total number of comparisons made in each of those tasks.  This includes comparisons 
made in service of analogical retrieval, by the second stage of MAC/FAC.   

Task # Cases # Comparisons Source of Cases 
Geometric Analogies 299 873 CogSketch 

Oddity Task 446 3,409 CogSketch 
Thermodynamics  

Problems 
8 4 AI System 

Physics Problems 253 1,137 Educational Testing 
Service 

Moral Decision-Making 41 420 Natural Language 
System 
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Table 3: Representation Statistics from Computational Investigations 

This table shows the mean, minimum, and maximum number of entities, expressions, and relations in 
the descriptions given to SME in the computational experiments summarized here.  Expressions include 
both relations and non-atomic terms, i.e. entities denoted via functional expressions.   

Task Entities Expressions Relations 
Mean Min Max Mean Min Max Mean Min Max 

Geometric 
Analogies 

2.5 1 8 24 3 136 16 0 112 

Oddity 
Task 

3 1 16 29 2 216 20 0 168 

Thermo 
Problems 

15 8 31 147 57 400 89 25 282 

Physics 
Problems 

32 4 71 129 5 431 87 2 298 

Moral 
Reasoning 

16 13 21 45 31 62 31 18 46 
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Table 4: Sample materials from Gentner et al. (2001). Passages were presented sentence by sentence and time to read each 
sentence was timed. The key result was that people took longer to read the final sentence in the Inconsistent case than in 
the Consistent case. 

Consistent: A Debate is a Race 
Dan saw the big debate as a race: he was determined to win it. He knew that he had to steer his 
course carefully in the competition. His strategy was to go cruising through the initial points and then 
make his move. After months of debating practice, Dan knew how to present his conclusions. If he 
could only keep up the pace, he had a good chance of winning. Before long, he felt the audience was 
receptive to his arguments. Then, he revved up as he made his last key points. His skill left his 
opponent far behind him at the finish line. 
Inconsistent: A Debate is a War 
Dan saw the big debate as a war: he was determined to be victorious. He knew that he had to use 
every weapon at his command in the competition. He mapped out his strategy to insure he 
established a dominant position. After months of debating practice, Dan knew how to present his 
conclusions. If he could only marshal his forces, he had a good chance of winning. Before long, he felt 
the audience was receptive to his arguments. Then, he intensified the bombardment as he made his 
last key points. His skill left his opponent far behind him at the finish line. 
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Table 5: Ubiquitous predicates by domain 

Domain Ubiquitous predicates 
Geometric Analogies None 
Oddity Task None 
Thermodynamics Problems =, and, nvalue, equation, the-set 
Physics Problems and, multipleChoiceSingleOptionList, 

testAnswers-
SingleCorrectMultipleChoice, TheList, 
TheSet 

Moral Decision-Making and 
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Table 6: Match hypothesis forest growth without ubiquitous predicates 

Domain % matches 
bloated 

% increase in # of 
match hypotheses 

Mean 
Bloat 

Max 
Bloat 

Thermodynamics Problems 100% 183% 329% 
Physics Problems 99% 34% 51% 
Moral Decision-Making 2.3% 2.7% 3.5% 
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Table 7: Statistics on sizes of match hypothesis forests and kernels, compared to worst-case analysis 

Mean % and Max % are the percentages of data structure sizes computed by SME over the 
computational experiments, compared to the theoretical worst case sizes, to illustrate how pessimistic 
the worst case analysis can be in practice.   

Experiment Actual match hypotheses vs. worst 
case 

Actual kernels vs. worst case 

 Mean % Max % Mean % Max % 
Geometric 
Analogies 

21.3% 55.5% 10.1% 
 

22.2% 

Oddity Task 20.28% 55.5% 9.9% 22.2% 
Thermodynamics 
Problems 

2.1% 2.6% 0.56% 0.7% 

Physics Problems 1.1% 17.3% 0.32% 6.2% 
Moral Decision-
Making 

2.3% 18% 1.1% 8.5% 

 


