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Abstract

Aggregating multiple non-expert opinions into a collective estimate can improve accuracy across

many contexts. However, two sources of error can diminish collective wisdom: individual esti-

mation biases and information sharing between individuals. Here we measure individual biases

and social influence rules in multiple experiments involving hundreds of individuals performing

a classic numerosity estimation task. We first investigate how existing aggregation methods,

such as calculating the arithmetic mean or the median, are influenced by these sources of error.

We show that the mean tends to overestimate, and the median underestimate, the true value

for a wide range of numerosities. Quantifying estimation bias, and mapping individual bias to

collective bias, allows us to develop and validate three new aggregation measures that effectively

counter sources of collective estimation error. In addition, we present results from a further

experiment that quantifies the social influence rules that individuals employ when incorporating

personal estimates with social information. We show that the corrected mean is remarkably

robust to social influence, retaining high accuracy in the presence or absence of social influence,

across numerosities, and across different methods for averaging social information. Utilizing

knowledge of estimation biases and social influence rules may therefore be an inexpensive and

general strategy to improve the wisdom of crowds.
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1. Introduction1

The proliferation of online social platforms has enabled the rapid expression of opinions on2

topics as diverse as the outcome of political elections, policy decisions, or the future performance3

of financial markets. Because non-experts contribute the majority of these opinions, they may4

be expected to have low predictive power. However, it has been shown empirically that by5

aggregating these non-expert opinions, usually by taking the arithmetic mean or the median of6

the set of estimates, the resulting ‘collective’ estimate can be highly accurate [1–6]. Experiments7

with non-human animals have demonstrated similar results [7–13], suggesting that aggregating8

diverse estimates can be a simple strategy for improving estimation accuracy across contexts9

and even species.10

Theoretical explanations for this ‘wisdom of crowds’ typically invoke the law of large num-11

bers [1, 14, 15]. If individual estimation errors are unbiased and center at the true value, then12

averaging the estimates of many individuals will increasingly converge on the true value. How-13

ever, empirical studies of individual human decision-making readily contradict this theoretical14

assumption. A wide variety of cognitive and perceptual biases have been documented in which15

humans seemingly deviate from rational behavior [16–18]. Empirical ‘laws’ such as Stevens’16

power law [19] have described the non-linear relationship between the subjective perception,17

and actual magnitude, of a physical stimulus. Such nonlinearities can lead to a systematic18

under- or over-estimation of a stimulus, as is frequently observed in numerosity estimation tasks19

[20–23]. Furthermore, the Weber-Fechner law [24] implies that log-normal, rather than normal,20

distributions of estimates are common. When such biased individual estimates are aggregated,21

the resulting collective estimate may also be biased, although the mapping between individual22

and collective biases is not well understood.23

Sir Francis Galton was one of the first to consider the effect of biased opinions on the24

accuracy of collective estimates. He preferred the median over the arithmetic mean, arguing25

that the latter measure “give[s] a voting power to ‘cranks’ in proportion to their crankiness”26

[25]. However, if individuals are prone to under- or over-estimation in a particular task, then27

the median will also under- or over-estimate the true value. Other aggregation measures have28

been proposed to improve the accuracy of the collective estimate, such as the geometric mean29

[26], the average of the arithmetic mean and median [27], and the ‘trimmed mean’ (where the30
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tails of a distribution of estimates are trimmed and then the arithmetic mean is calculated from31

the truncated distribution) [28]. Although these measures may empirically improve accuracy in32

some cases, they tend not to address directly the root cause of collective error (i.e., estimation33

bias). Therefore, it is not well understood how they generalize to other contexts and how close34

they are to the optimal aggregation strategy.35

Many (though not all) models of the wisdom of crowds also assume that opinions are gener-36

ated independently of one another, which tends to maximize the information contained within37

the set of opinions [1, 14, 15]. But in real world contexts, it is more common for individuals to38

share information with, and influence, one another [26, 29]. In such cases, the individual esti-39

mates used to calculate a collective estimate will be correlated to some degree. Social influence40

can not only shrink the distribution of estimates [26] but may also systematically shift the distri-41

bution, depending on the rules that individuals follow when updating their personal estimate in42

response to available social information. For example, if individuals with extreme opinions are43

more resistant to social influence, then the distribution of estimates will tend to shift towards44

these opinions, leading to changes in the collective estimate as individuals share information45

with each other. In short, social influence may induce estimation bias, even if individuals in46

isolation are unbiased.47

Quantifying how both individual estimation biases and social influence affect collective esti-48

mation is therefore crucial to optimizing, and understanding the limits of, the wisdom of crowds.49

Such an understanding would help to identify which of the existing aggregation measures should50

lead to the highest accuracy. It could also permit the design of novel aggregation measures that51

counteract these major sources of error, potentially improving both the accuracy and robustness52

of the wisdom of crowds beyond that allowed by existing measures.53

Here, we collected five new datasets, and analyzed eight existing datasets from the literature,54

to characterize individual estimation bias in a well-known wisdom of crowds task, the ‘jellybean55

jar’ estimation problem. In this task, individuals in isolation simply estimate the number of56

objects (such as jellybeans, gumballs, or beads) in a jar [5, 6, 30, 31] (see Methods for details). We57

then performed an experiment manipulating social information to quantify the social influence58

rules that individuals use during this estimation task (Methods). We used these results to59

quantify the accuracy of a variety of aggregation measures, and identified new aggregation60

measures to improve collective accuracy in the presence of individual bias and social influence.61
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2. Methods62

2.1. Numerosity estimation63

For the five datasets that we collected, we recruited members of the community in Princeton,64

NJ, USA on April 26–28 and May 1, 2012, and in Santa Fe, NM, USA on October 17–20, 2016.65

Each participant was presented with one jar containing one of the following numbers of objects:66

54 (n = 36), 139 (n = 51), 659 (n = 602), 5897 (n = 69), or 27852 (n = 54) (see Figure 1a for a67

representative photograph of the kind of object and jar used for the three smallest numerosities,68

and Figure S1 for a representative photograph of the kind of object and jar used for the largest69

two numerosities.). To motivate accurate estimates, the participants were informed that the70

estimate closest to the true value for each jar would earn a monetary prize. The participants71

then estimated the number of objects in the jar. No time limit was set, and participants were72

advised not to communicate with each other after completing the task.73

Eight additional datasets were included for comparative purposes and were obtained from74

refs. [5, 6, 30, 31]. Details of statistical analyses and simulations performed on the collected75

datasets are provided in the electronic supplementary material.76

2.2. Social influence experiment77

For the experiments run in Princeton (number of objects J = 659), we additionally tested78

the social influence rules that individuals use. The participants first recorded their initial es-79

timate, G1. Next, participants were given ‘social’ information, in which they were told that80

N = {1, 2, 5, 10, 50, 100} previous participants’ estimates were randomly selected and that the81

‘average’ of these guesses, S, was displayed on a computer screen. Unbeknownst to the partici-82

pant, this social information was artificially generated by the computer, allowing us to control,83

and thus decouple, the perceived social group size and social distance relative to the partici-84

pant’s initial guess. Half of the participants were randomly assigned to receive social information85

drawn from a uniform distribution from G1/2 to G1, and the other half received social informa-86

tion drawn from a uniform distribution from G1 to 2G1. Participants were then given the option87

to revise their initial guess by making a second estimate, G2, based on their personal estimate88

and the perceived social information that they were given. Participants were informed that only89

the second guess would count toward winning a monetary prize. We therefore controlled the90
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social group size by varying N and controlled the social distance independently of the partic-91

ipant’s accuracy by choosing S from G1/2 to 2G1. Details of the social influence model and92

simulations performed on these data are provided in the electronic supplementary material.93

2.3. Designing ‘corrected’ aggregation measures94

For a log-normal distribution, the expected value of the mean is given byXmean = exp (µ+ σ2/2)95

and the expected value of the median is Xmedian = exp (µ), where µ and σ are the two param-96

eters describing the distribution. Our empirical measurements of estimation bias resulted in the97

best-fit relationships µ = mµ ln(J) + bµ and σ = mσ ln(J) + bσ (Figure 1c-d). We replace µ and98

σ in the first two equations with the best-fit relationships, and then solve for J , which becomes99

our new, ‘corrected’, estimate of the true value. This results in a ‘corrected’ arithmetic mean:100

XC
mean = exp

((√
2m2

σ(lnXmean − bµ) + 2m2
µ

(
1

2
+
mσbσ
mµ

)
− (mσbσ +mµ)

)
/m2

σ

)
and a ‘corrected’ median:101

XC
median = exp ((lnXmedian − bµ)/mµ)

This procedure can be readily adapted for other estimation tasks, distributions of estimates,102

and estimation biases.103

2.4. A maximum-likelihood aggregation measure104

For this aggregation measure, the full set of estimates is used to form a new collective105

estimate, rather than just an aggregation measure such as the mean or the median to generate106

a corrected measure. We again invoke the best-fit relationships in Figure 1c-d, which imply107

that, for a given actual number of objects J , we expect a log-normal distribution described by108

parameters µ = mµ ln(J) + bµ and σ = mσ ln(J) + bσ. We therefore scan across values of J and109

calculate the likelihood that each associated log-normal distribution generated the given set of110

estimates. The numerosity that maximizes this likelihood becomes the collective estimate of the111

true value.112

3. Results113

3.1. Quantifying estimation bias114

To uncover individual biases in estimation tasks, we first sought to characterize how the dis-115

tribution of individual estimates changes as a function of the true number of objects J (Figure116
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1a). We performed experiments across a >500-fold range of numerosities, from 54 to 27852 ob-117

jects, with a total of 812 people sampled across the experiments. For all numerosities tested, an118

approximately log-normal distribution was observed (see Figure 1b for a histogram of an exam-119

ple dataset, Figure S2 for histograms of all other datasets, and Figure S3 for a comparison of the120

datasets to log-normal distributions). Log-normal distributions can be described by two param-121

eters, µ and σ, which correspond to the arithmetic mean and standard deviation, respectively, of122

the normal distribution that results when the original estimates are log-transformed (Figure 1b,123

inset, and section 1 of the electronic supplementary material on how the maximum-likelihood124

estimates of µ and σ were computed for each dataset).125

We found that the shape of the log-normal distribution changes in a predictable manner126

as the numerosity changes. In particular, the two parameters of the log-normal distribution, µ127

and σ, both exhibit a linear relationship with the logarithm of the number of objects in the jar128

(Figure 1c-d). These relationships hold across the entire range of numerosities that we tested129

(which spans nearly three orders of magnitude). That the parameters of the distribution co-vary130

closely with numerosity allows us to directly compute how the magnitude of various aggregation131

measures changes with numerosity, and provides us with information about human estimation132

behavior which we can exploit to improve the accuracy of the aggregation measures.133

3.2. Expected error of aggregation measures134

We used the maximum-likelihood relationships shown in Figure 1c-d to first compute the135

expected value of the arithmetic mean, given by exp(µ + σ2/2), and the median, given by136

exp(µ), of the log-normal distribution of estimates, across the range of numerosities that we137

tested empirically (between 54 and 27852 objects). We then compared the magnitude of these138

two aggregation measures to the true value to identify any systematic biases in these measures139

(we note that any aggregation measure may be examined in this way, but for clarity here we140

display just the two most commonly used measures).141

Overall, across the range of numerosities tested, we found that the arithmetic mean tended142

to overestimate, while the median tended to underestimate, the true value (Figure 2a). This is143

corroborated by our empirical data: for four out of the five datasets, the mean overestimated144

the true value, while the median underestimated the true value in four of five datasets (Figure145

2a). We note that our model predicts qualitatively different patterns for very small numerosities146

(outside of the range that we tested experimentally). Specifically, in this regime the model147
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predicts that the mean and the median both overestimate the true value, with large relative148

errors for both measures. However, we expect humans to behave differently when presented149

with a small number of objects that can be counted directly compared to a large number of150

objects that could not be easily counted; therefore, we avoid extrapolating our results and apply151

our model only to the range that we tested experimentally (spanning nearly three orders of152

magnitude).153

That the median tends to underestimate the true value implies that the majority of in-154

dividuals underestimate the true numerosity. This conforms with the results of other studies155

demonstrating an underestimation bias in numerosity estimation in humans (e.g., [21–23, 32]).156

Despite this, the arithmetic mean tends to overestimate the true value because the log-normal157

distribution has a long tail (Figure 1b), which inflates the mean. Indeed, because the parameter158

σ increases with numerosity, the dispersion of the distribution is expected to increase dispro-159

portionally quickly with numerosity, such that the coefficient of variation (the ratio between the160

standard deviation and the mean of the untransformed estimates) increases with numerosity161

(Figure S4). This finding differs from other results showing a constant coefficient of variation162

across numerosities [20, 21]. This contrasting result may be explained by the larger-than-typical163

range of numerosities that we evaluated here (with respect to previous studies), which improves164

our ability to detect a trend in the coefficient of variation. Alternatively (and not mutually165

exclusively), it may result from other studies displaying many numerosities to the same partici-166

pant, which may cause correlations in a participant’s estimates [21, 22] and reduce variation. By167

contrast, we only showed a single jar to each participant in our estimation experiments. Overall,168

the degree of underestimation and overestimation of the median and mean, respectively, was169

approximately equal across the range of numerosities tested, and we did not detect consistent170

differences in accuracy between these two aggregation measures (Figure 2b).171

3.3. Designing and testing aggregation measures that counteract estimation bias172

Knowing the expected error of the aggregation measures relative to the true value, we can173

design new measures to counter this source of collective estimation error. Using this methodol-174

ogy, we specify functional forms of the ‘corrected’ arithmetic mean and the ‘corrected’ median175

(Methods). In addition to these two adjusted measures, we propose a maximum-likelihood176

method that uses the full set of estimates, rather than just the mean or median, to locate the177

numerosity that is most likely to have produced those estimates (Methods). Although applied178
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here to the case of log-normal distributions and particular relationships between numerosity and179

the parameters of the distributions, our procedure is general and could be used to construct180

specific corrected measures appropriate for other distributions and relationships, subsequent to181

empirically characterizing these patterns.182

Once the corrected measures have been parameterized for a specific context, they can be183

applied to a new test dataset to produce an improved collective estimate from that data. How-184

ever, the three new measures are predicted to have near-zero error only in their expected values,185

which assumes an infinitely large test dataset (and that the corrected measures have been accu-186

rately parameterized). A finite-sized set of estimates, on the other hand, will generally exhibit187

some deviation from the expected value. It is possible that the measures will produce differ-188

ent noise distributions around the expected value, which will affect their real-world accuracy.189

To address this, we measured the overall accuracy of the aggregation measures across a wide190

range of test sample sizes and numerosities, simulating datasets by drawing samples using the191

maximum-likelihood fits shown in Figure 1c-d. We also conducted a separate analysis, in which192

we generate test datasets by drawing samples directly from our experimental data, the results193

of which we include in the electronic supplementary material (see section 2 of the electronic194

supplementary material for details on both methodologies and for justification of why we chose195

to include the results from the simulated data in the main text.)196

We compared each of the new aggregation measures to the arithmetic mean, the median,197

and three other ‘standard’ measures that have been described previously in the literature: the198

geometric mean, the average of the mean and the median, and a trimmed mean (where we remove199

the smallest 10% of the data, and the largest 10% of the data, before computing the arithmetic200

mean), in pairwise fashion, calculating the fraction of simulations in which one measure had201

lower error than the other.202

All three new aggregation measures outperformed all of the other measures (Figure 3a,203

left five columns), displaying lower error in 58–78% of simulations. Comparing the three new204

measures against each other, the maximum-likelihood measure performed best, followed by the205

corrected mean, while the corrected median resulted in the lowest overall accuracy (Figure 3a,206

right three columns). The 95% confidence intervals of the percentages are, at most, ±1% of the207

stated percentages (binomial test, n = 10000), and therefore the results shown in Figure 3a are208

all significantly different from chance. The results from our alternate analysis, using samples209
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drawn from our experimental data, are broadly similar, albeit somewhat weaker, than those using210

simulated data: the corrected median and maximum-likelihood measures still outperformed all211

of the five standard measures, while the corrected mean outperformed three out of the five212

standard measures (Figure S5a).213

While the above analysis suggests that the new aggregation measures may be more accurate214

than many standard measures over a wide range of conditions, it relied on over 800 estimates215

to parameterize the individual estimation biases. Such an investment to characterize estimation216

biases may be unfeasible for many applications, so we asked how large of a training dataset is217

necessary in order to observe improvements in accuracy over the standard measures. To study218

this, we obtained a given number of estimates from across the range of numerosities, generated219

a maximum-likelihood regression on that training set, then used that to predict the numerosity220

of a separate test dataset. As with the previous analysis, we generated the training and test221

datasets by drawing samples using the maximum-likelihood fits shown in Figure 1c-d, but also222

conducted a parallel analysis whereby we generated training and test datasets by drawing from223

our experimental data (section 3 of the electronic supplementary material for details of both224

methodologies).225

We found rapid improvements in accuracy as the size of the training dataset increased (Figure226

3b). In our simulations, the maximum-likelihood measure begins to outperform the median and227

geometric mean when the size of the training dataset is at least 20 samples, the arithmetic228

mean and trimmed mean after 55 samples, and the average of the mean and median after 80229

samples. The corrected mean required at least 105 samples, while the corrected median required230

at least 175 samples, to outperform the five standard measures. Using samples drawn from our231

experimental data, our three measures required approximately 200 samples to outperform the232

five standard measures (Figure S5b). In short, while our method of correcting biases requires233

parameterizing bias across the entire range of numerosities of interest, our simulations show234

that much fewer training samples is sufficient for our new aggregation measures to exhibit an235

accuracy higher than standard aggregation measures.236

We next investigated precisely how the size of the test dataset affects accuracy. We defined237

an ‘error tolerance’ as the maximum acceptable error of an aggregation measure and asked what238

is the probability that a measure achieves a given tolerance for a particular experiment (the239

‘tolerance probability’). As before, we generate test samples by drawing from the maximum-240
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likelihood fits but also perform an analysis drawing from our experimental data (see section 4 of241

the electronic supplementary material for both methodologies). For all numerosities, the three242

new aggregation measures tended to outperform the five standard measures if the size of the test243

dataset is relatively large (Figure 4b-c, Figures S6-S7). However, when the numerosity is large244

and the size of the test dataset is relatively small, we observed markedly different patterns. In245

this regime, the relative accuracy of aggregation measures can depend on the error tolerance.246

For example, for numerosity ln(J) = 10, for small error tolerances (<0.4), the geometric mean247

exhibited the lowest tolerance probability across all of the measures under consideration, but248

for large error tolerances (>0.75), it is the most likely to fall within tolerance (Figure 4a).249

This means that if a researcher wants the collective estimate to be within 40% of the true250

value (error tolerance of 0.4), then the geometric mean would be the worst choice for small test251

datasets at large numerosities, but if the tolerance was instead set to 75% of the true value,252

then the geometric mean would be the best out of all of the measures. These patterns were253

also broadly reflected in our analysis using samples drawn from our experimental data (Figures254

S8-S10). Therefore, while the corrected measures should have close to perfect accuracy at the255

limit of infinite sample size (and perform better than the standard measures overall), there exist256

particular regimes in which the standard measures may outperform the new measures.257

3.4. Quantifying the social influence rules258

We then conducted an experiment to quantify the social influence rules that individuals use259

to update their personal estimate by incorporating information about the estimates of other260

people (see Methods for details). Briefly, we first allowed participants to make an independent261

estimate. Then we generated artificial ‘social information’ by selecting a value that was a certain262

displacement from their first estimate (the ‘social displacement’), and informed the participants263

that this value was the result of averaging across a certain number of previous estimates (the264

‘social group size’). We gave the participants the opportunity to revise their estimate, and265

we measured how their change in estimate was affected by the social displacement and social266

group size. By using artificial information and masquerading it as real social information, unlike267

previous studies, we were able to decouple the effect of social group size, social displacement,268

and the accuracy of the initial estimate.269

We found that a fraction of participants (231 out of 602 participants) completely discounted270

the social information, meaning that their second estimate was identical to their first. We271
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constructed a two-stage hurdle model to describe the social influence rules by first modeling272

the probability that a participant utilized or discarded social information, then, for the 371273

participants who did utilize social information, we modeled the magnitude of the effect of social274

information.275

A Bayesian approach to fitting a logistic regression model was used to infer whether social276

displacement (defined as (S−G1)/G1, where S is the social estimate and G1 is the participant’s277

initial estimate), social distance (the absolute value of social displacement), or social group size278

affected the probability that a participant ignored, or used, social information (see section 5 of279

the electronic supplementary material for details). Because social distance is a function of social280

displacement, we did not make inferences about these two variables separately based on their281

respective credible intervals (coefficient [95% CI]: 0.22 [0.03,0.40] for social displacement and282

0.061 [-0.12, 0.24] for social distance). Instead, we graphically interpreted how these two variables283

jointly affect the probability of changing one’s estimate in response to social information, and284

overall we found that numerically larger social estimates increased the probability of changing285

one’s guess, but numerically smaller social estimates decreased that effect (Figure 5a). The286

probability of using social information did not depend credibly on social group size (-0.045 [-287

0.18, 0.094]) (Figure 5b). Posterior predictive checks were used to verify the model captured288

statistical features of the data (Figure S12); see Figure S11a for the posterior distributions.289

We next modeled the magnitude of the change in estimate, out of the participants who290

did utilize social information. Following [33], we defined a measure of the strength of social291

influence, α, by considering the logarithm of the participant’s revised estimate, ln(G2), as a292

weighted average of the logarithm of the perceived social information, ln(S), and the logarithm293

of the participant’s initial estimate ln(G1), such that ln(G2) = α ln(S) + (1 − α) ln(G1). Here,294

α = 0 indicates that the participant’s two estimates were identical, and therefore the individual295

was not influenced by social information at all, while α = 1 means the participant’s second296

estimate mirrors the social information. We again used Bayesian techniques to estimate α as297

a normally distributed, logistically transformed linear function of social displacement, social298

distance, and group size (see section 5 of the electronic supplementary material for details).299

Graphically, we found that the social influence weight decreases as the social information is300

increasingly smaller than the initial estimate but little effect for social information larger than301

the initial estimate (coeff. [95% CI]: 0.65 [0.28, 1.07] for social displacement and -0.41 [-0.82,302
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-0.0052] for social distance) (Figure 5c). The social influence weight credibly increases with303

social group size (0.37 [0.17, 0.58]) (Figure 5d). Again, posterior predictive checks revealed that304

the model generated an overall distribution of social weights consistent with what was found in305

the data (Figure S13); see Figure 11b for the posterior distributions.306

3.5. The effect of social influence on the wisdom of crowds307

If individuals share information with each other before their opinions are aggregated, then308

the independent, log-normal distribution of estimates will be altered. Since individuals take a309

form of weighted average of their own estimate and perceived social information, the distribution310

of estimates should converge towards intermediate values. However, it is not clear what effect311

the observed social influence rules have on the value, or accuracy, of the aggregation measures312

[34]. In particular, since the new aggregation measures introduced here were parameterized313

on independent estimates unaltered by social influence, their performance may degrade when314

individuals share information with each other.315

We simulated several rounds of influence using the rules that we uncovered, using a fully316

connected social network (each individual was connected all other individuals), in order to317

identify measures that may be relatively robust to social influence (see section 6 of the electronic318

supplementary material). We used two alternate assumptions about how a set of estimates is319

averaged, either by the individual or by an external agent, before being presented as social320

information (the ‘individual aggregation measure’), using either the geometric mean or the321

arithmetic mean (see section 7 of the electronic supplementary material). While the maximum-322

likelihood measure generally performed the best in the absence of social influence (Figure 3), this323

measure was highly susceptible to the effects of social influence, particularly at large numerosities324

(Figure 6). By contrast, the corrected mean was remarkably robust to social influence, across325

numerosities, and for both individual aggregation measures, while exhibiting nearly the same326

accuracy as the maximum-likelihood measure in the absence of social influence.327

4. Discussion328

While the wisdom of crowds has been documented in many human and non-human contexts,329

the limits of its accuracy are still not well understood. Here we demonstrated how, why, and330

when collective wisdom may break down by characterizing two major sources of error, individual331
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(estimation bias) and social (information sharing). We revealed the limitations of some of332

the most common averaging measures and introduced three novel measures that leverage our333

understanding of these sources of error to improve the wisdom of crowds.334

In addition to the conclusions and recommendations drawn for numerosity estimation, the335

methods described here could be applied to a wide range of estimation tasks. Estimation biases336

and social influence are ubiquitous, and estimation tasks may cluster into broad classes that337

are prone to similar biases or social rules [35]. For example, the distribution of estimates for338

many tasks are likely to be log-normal in nature [36], while others may tend to be normally339

distributed. Indeed, there is evidence that counteracting estimation biases can be a successful340

strategy to improve estimates of probabilities [37–39], city populations [40], movie box office341

returns [40], and engineering failure rates [41].342

Furthermore, the social influence rules that we identified empirically are similar to general343

models of social influence, with the exception of the effect of the social displacement that we344

uncovered. This asymmetric effect suggests that a focal individual was more strongly affected by345

social information that was larger in value relative to the focal individual’s estimate compared346

to social information that was smaller than the individual’s estimate. The observed increase347

in the coefficient of variation as numerosity increased (Figure S4b) may suggest that one’s348

confidence about one’s own estimate decreases as numerosity increases, which could lead to349

an asymmetric effect of social displacement. Other estimation contexts in which confidence350

scales with estimation magnitude could yield a similar effect. This effect was combined with a351

weaker negative effect of the social distance, which is reminiscent of ‘bounded confidence’ opinion352

dynamics models (e.g., [42–44]), whereby individuals weigh more strongly social information353

that is similar to their own opinion. By carefully characterizing both the individual estimation354

biases and collective biases generated by social information sharing, our approach allows us to355

counteract such biases, potentially yielding significant improvements when aggregating opinions356

across other domains.357

Other approaches have been used to improve the accuracy of crowds. One strategy is to358

search for ‘hidden experts’ and weigh these opinions more strongly [3, 33, 45–48]. While this359

can be effective in certain contexts, we did not find evidence of hidden experts in our data.360

Comparing the group of individuals who ignored social information and those who utilized social361

information, the two distribution of estimations were not significantly different (P = 0.938,362
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Welch’s t-test on the log-transformed estimates), and the arithmetic mean, the median, nor363

our three new aggregation measures were significantly more accurate across the two groups364

(Figure S14). Furthermore, searching for hidden experts requires additional information about365

the individuals (such as propensity to use social information, past performance, or confidence366

level). Our method does not require any additional information about each individual, only367

knowledge about statistical tendencies of the population at large (and relatively few samples368

may be needed to sufficiently parameterize these tendencies).369

Further refinement of our methods is possible. In cases where the underlying social network370

is known [49, 50], or where individuals vary in power or influence [51], simulation of social371

influence rules on these networks could lead to a more nuanced understanding of the mapping372

between individual to collective estimates. In addition, aggregation measures can be generalized373

in a straightforward manner to calculate confidence intervals, in which an estimate range is374

generated that includes the true value with some probability. To improve the accuracy of375

confidence intervals, information about the sample size and other features that we showed to be376

important can be included.377

In summary, counteracting estimation biases and social influence may be a simple, general,378

and computationally efficient strategy to improve the wisdom of crowds.379
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Figure 1: The effect of numerosity on the distribution of estimates. (a) An example jar containing

659 objects (ln(J) = 6.5). (b) The histogram of estimates (grey bars) resulting from the jar shown in (a) closely

approximates a log-normal distribution (solid black line); dotted vertical line indicates the true number of objects.

A log-normal distribution is described by two parameters, µ and σ, which are the mean and standard deviation,

respectively, of the normal distribution that results when the logarithm of the estimates is taken (inset). (c-d)

The two parameters µ and σ increase linearly with the logarithm of the true number of objects, ln(J). Solid

lines: maximum-likelihood estimate, shaded area: 95% confidence interval. The maximum-likelihood estimate

was calculated using only the five original datasets collected for this study (black circles); the eight other datasets

collected from the literature are shown only for comparison (grey circles indicate other datasets for which the full

dataset was available, white circles indicate datasets for which only summary statistics were available, see section

1 of the electronic supplementary material).
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Figure 2: The accuracy of the arithmetic mean and the median. (a) The expected value of the arithmetic

mean (blue) and median (red) relative to the true number of objects (black dotted line), as a function of ln(J).

The relative value is defined as (X − J)/J , where X is the value of the aggregation measure. (b) The relative

error of the expected value of the two aggregation measures, defined as |X − J |/J . For both panels, solid lines

indicate maximum-likelihood values, shaded areas indicate 95% confidence intervals, and solid circles show the

empirical values from the five datasets.
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Figure 3: The overall relative performance of the aggregation measures. (a) The percentage of simula-

tions in which the measure indicated in the row was more accurate than the measure indicated in the column.

The three new measures are listed in the rows and are compared to all eight measures in the columns. Colors

correlate with percentages (blue: >50%, red: <50%). (b) The median error of the three new aggregation measures

(corrected median, dashed red line; corrected mean, dashed blue line; maximum-likelihood measure, dashed green

line) as a function of the size of the training dataset. The three new aggregation measures are compared against

the arithmetic mean (solid blue), median (solid red), the geometric mean (orange), the average of the mean and

the median (yellow), and the trimmed mean (magenta). The 95% confidence interval are displayed for the latter

measures, which are not a function of the size of the training dataset.
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Figure 4: The effect of the test dataset size and error tolerance level on the relative accuracy of

the aggregation measures. The probability that an aggregation measure exhibits a relative error (defined as

|X −J |/J , where X is the value of an aggregation measure) less than a given error tolerance, for test dataset size

(a) 4, (b) 64, and (c) 512, and numerosity J = 22026 (ln(J) = 10). In panel (a), the lines for the arithmetic mean

and the trimmed mean are nearly identical; in panel (c), the lines for the corrected mean and corrected median

are nearly identical.
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Figure 5: The social influence rules. The probability that an individual is affected by social information as

a function of (a) social displacement (the relative displacement of the value of the social information from the

participant’s initial estimate) and (b) perceived social group size. The social influence weight α for those who

used social information as a function of (c) social displacement and (d) social group size. Solid lines: predicted

mean value; shaded area: 95% credible interval; circles: the mean of binned data for (a-b) and raw data for (c-d).

See Figure S11 for the posterior distributions of each predictor variable. We note that a small fraction of the

empirical data extend outside of the bounds of the plots in (c-d); we selected the bounds to more clearly show

the patterns of the fitted parameters.
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Figure 6: The robustness of aggregation measures under social influence. The relative error of the eight

aggregation measures without social influence (light gray circles) and after ten rounds of social influence (dark

gray circles) when (a-c) individuals internally take the geometric mean of the social information that they observe,

or when (d-f) individuals internally take the arithmetic mean of the social information, for numerosity ln(J) = 4

(a,d), ln(J) = 7 (b,e), and ln(J) = 10 (c,f). Circles show the mean relative error across 1000 replicates, error bars

show twice the standard error. The error bars are often smaller than the size of the corresponding circles, and

where some gray circles are not visible, they are nearly identical to the corresponding black circles.
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